(-3,3)
The inequality ( x < 7 ) defines the interval ( (-\infty, 7) ). This means that all real numbers less than 7 are included in the solution set, while 7 itself is not included. Conversely, if the inequality were ( x > 7 ), it would define the interval ( (7, \infty) ).
Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. The equation: x - 3 = 7 has one solution, that is x = 10. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of value of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. The half-closed interval [3, +infinity) ; the end point 3 is included.
The inequality of -2 and 3 can be expressed as -2 < 3. This indicates that -2 is less than 3 on the number line. In terms of a range, any number greater than -2 and less than 3 can be represented as -2 < x < 3, where x represents any value within that interval.
An inequality has a limited range of solutions when it restricts the values of the variable to a specific interval or set of points. For example, inequalities like ( x < 5 ) or ( 2 < x \leq 7 ) define boundaries that limit the possible values of ( x ). Additionally, inequalities that involve absolute values, such as ( |x - 3| < 2 ), also result in a limited range, as they constrain the variable to fall within a specific distance from a point.
In mathematics, the solution of an inequality refers to the set of values that satisfy the inequality condition. For example, in the inequality (x > 3), any number greater than 3 is considered a solution. These solutions can often be represented on a number line or in interval notation, illustrating all possible values that fulfill the inequality. Essentially, it identifies the range of values for which the inequality holds true.
The inequality ( x < 7 ) defines the interval ( (-\infty, 7) ). This means that all real numbers less than 7 are included in the solution set, while 7 itself is not included. Conversely, if the inequality were ( x > 7 ), it would define the interval ( (7, \infty) ).
x - 2 is not a inequality and so the question does not make any sense.
-4
Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. The equation: x - 3 = 7 has one solution, that is x = 10. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of value of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. The half-closed interval [3, +infinity) ; the end point 3 is included.
x - 3 is not an inequality.
The inequality of -2 and 3 can be expressed as -2 < 3. This indicates that -2 is less than 3 on the number line. In terms of a range, any number greater than -2 and less than 3 can be represented as -2 < x < 3, where x represents any value within that interval.
In mathematics, the solution of an inequality refers to the set of values that satisfy the inequality condition. For example, in the inequality (x > 3), any number greater than 3 is considered a solution. These solutions can often be represented on a number line or in interval notation, illustrating all possible values that fulfill the inequality. Essentially, it identifies the range of values for which the inequality holds true.
Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. Example 1. The equation: x - 3 = 7 has one solution, that is x = 10. Example 2. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of values of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. Example 3. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) Example 4. The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. Example: The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. Example: The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. Example : The half-closed interval [3, +infinity) ; the end point 3 is included.
One point in each interval. An entire interval, between two critical points, either fulfills, or doesn't fulfill, the inequality.For example, (x-3)(x+5) > 0; the corresponding equality is (x-3)(x+5) = 0, with the two critical points x = 3 and x = -5. The intervals that must be checked are x < -5, x between -5 and 3, and x > 3.
The inequality ( x^2 < 100 ) can be solved by first taking the square root of both sides, giving ( -10 < x < 10 ). Thus, the solution is the interval ( (-10, 10) ). This means that any value of ( x ) within this range will satisfy the inequality.
[a, b] : a ≤ x ≤ b [a, b) : a ≤ x < b (a, b] : a < x ≤ b (a, b) : a < x < b
To write and solve an absolute value inequality, start by expressing the inequality in the form |x| < a or |x| > a, where a is a positive number. For |x| < a, split it into two inequalities: -a < x < a. For |x| > a, split it into two separate inequalities: x < -a or x > a. Finally, solve each inequality to find the solution set and represent it using interval notation or a number line.