The question asks about "listed" points. In such circumstances would it be too much to expect that you make sure that there is some list?
shaded
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
Pick a sample point in the shaded area and plug it into the equation and see if it makes it true.
Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.
The shaded area of the graph of an inequality show the solution to the inequality. For example, if the area below y = x is shaded it is showing those ordered pairs which solve y < x.
shaded
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
Pick a sample point in the shaded area and plug it into the equation and see if it makes it true.
Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.
The shaded area of the graph of an inequality show the solution to the inequality. For example, if the area below y = x is shaded it is showing those ordered pairs which solve y < x.
when graphing a line you simply plot the points based on the ordered pairs and connect the dots; there you have a line. An inequality graph refers to the shaded region of the coordinate plane that does not coincide with the line, hence the term, inequality.
To determine the inequality graphed on a number line, you would need to identify the points marked on the line and the direction of any arrows or shading. If the line is shaded to the left of a point (for example, -2) with an open circle, it represents the inequality ( x < -2 ). If it’s shaded to the right with a closed circle, it would indicate ( x \geq -2 ). Please provide specific details about the graph for a more precise answer.
One variable inequality- graph the point on the number line then choose a point on the point, to the left and to the right to see what gets shaded. Two variable inequality- graph the line on grid paper then choose a point on the line, to the left and to the right to see what gets shaded.
Actually, a linear inequality, such as y > 2x - 1, -3x + 2y < 9, or y > 2 is shaded, not a linear equation.The shaded region on the graph implies that any number in the shaded region is a solution to the inequality. For example when graphing y > 2, all values greater than 2 are solutions to the inequality; therefore, the area above the broken line at y>2 is shaded. Note that when graphing ">" or "=" or "
The answer depends on which area is shaded for each inequality. I always teach pupils to shade the unwanted or non-feasible region. That way the solution is in the unshaded area. This is much easier to identify than do distinguish between a region which is shaded three times and another which is shaded four times.
it is called a half plane :)
True