The question asks about "these functions". In those circumstances would it be too much to expect that you make sure that there is something that these can refer to?
It is f(x) = -x^2.
In transformations a reflection across the x axis produces a mirror image
c
(2.5,-2.75)
The reflection of a point ( P ) across an axis (such as the x-axis or y-axis) results in a new point ( P' ) that is equidistant from the axis but on the opposite side. For example, if ( P ) is at coordinates ( (x, y) ), its reflection across the x-axis would be ( P' ) at ( (x, -y) ). The distance between ( P ) and the axis remains the same, ensuring that the two points are symmetrical with respect to that axis.
It is f(x) = -x^2.
In transformations a reflection across the x axis produces a mirror image
For a reflection across the x axis, both the slope and the y intercept would have the same magnitude but the opposite sign.
y = -f(x) is a reflection of y = f(x) in the x axis.
(2.5,-2.75)
c
Reflection across the y-axis changes the sign of the x - coordinate only, that is, (x, y) becomes (-x, y).
The reflection of a point ( P ) across an axis (such as the x-axis or y-axis) results in a new point ( P' ) that is equidistant from the axis but on the opposite side. For example, if ( P ) is at coordinates ( (x, y) ), its reflection across the x-axis would be ( P' ) at ( (x, -y) ). The distance between ( P ) and the axis remains the same, ensuring that the two points are symmetrical with respect to that axis.
The reflection of a point or shape across the y-axis involves changing the sign of the x-coordinates while keeping the y-coordinates the same. For example, if you have a point (x, y), its reflection across the y-axis would be (-x, y). This transformation effectively flips the figure horizontally, creating a mirror image on the opposite side of the y-axis.
A' = (-1, -2)
The reflection of a point across the y-axis involves changing the sign of the x-coordinate while keeping the y-coordinate the same. In this case, the point (-1, -5) will reflect to (1, -5) across the y-axis. This is because the x-coordinate changes from -1 to 1, while the y-coordinate remains -5.
reflection in the x-axis