Not by itself. A mathematical operation has properties in the context of a set over which it is defined. It is possible to have a set over which properties are not valid.Having said that, the set of rational numbers is closed under subtraction, as is the set of real numbers or complex numbers.Multiplication is distributive over subtraction.
It means whatever members of the set you subtract, the answer will still be a member of the set. For example, the set of positive integers is not closed under subtraction, since 3 - 8 = -5
1 No. 2 No. 3 Yes.
Yes.
A set can be closed or not closed, not an individual element, such as zero. Furthermore, closure depends on the operation under consideration.
Subtraction.
Please clarify what set you are talking about. There are several sets of numbers. Also, "closed under..." should be followed by an operation; "natural" is not an operation.
To be closed under an operation, when that operation is applied to two member of a set then the result must also be a member of the set. Thus the sets ℂ (Complex numbers), ℝ (Real Numbers), ℚ (Rational Numbers) and ℤ (integers) are closed under subtraction. ℤ+ (the positive integers), ℤ- (the negative integers) and ℕ (the natural numbers) are not closed under subtraction as subtraction can lead to a result which is not a member of the set.
The set of positive whole numbers is not closed under subtraction! In order for a set of numbers to be closed under some operation would mean that if you take any two elements of that set and use the operation the resulting "answer" would also be in the original set.26 is a positive whole number.40 is a positive whole number.However 26-40 = -14 which is clearly not a positive whole number. So positive whole numbers are not closed under subtraction.
Not by itself. A mathematical operation has properties in the context of a set over which it is defined. It is possible to have a set over which properties are not valid.Having said that, the set of rational numbers is closed under subtraction, as is the set of real numbers or complex numbers.Multiplication is distributive over subtraction.
A set of real numbers is closed under subtraction when you take two real numbers and subtract , the answer is always a real number .
A set is a set and does not need an arithmetic operation.
Yes, the set of integers is closed under subtraction.
It means whatever members of the set you subtract, the answer will still be a member of the set. For example, the set of positive integers is not closed under subtraction, since 3 - 8 = -5
1 No. 2 No. 3 Yes.
Yes.
Yes. The set of real numbers is closed under addition, subtraction, multiplication. The set of real numbers without zero is closed under division.