answersLogoWhite

0

-4 is the first negative term. The progression is 24,20,16,12,8,4,0,-4,...

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
JudyJudy
Simplicity is my specialty.
Chat with Judy
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: Which term is the first negative term of the arithmetic progression 242016?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Is 15 26 37 48 59 an arithmetic sequence?

It is an Arithmetic Progression with a constant difference of 11 and first term 15.


What is the difference between arithmetic progression and geometric progression?

In an arithmetic progression the difference between each term (except the first) and the one before is a constant. In a geometric progression, their ratio is a constant. That is, Arithmetic progression U(n) - U(n-1) = d, where d, the common difference, is a constant and n = 2, 3, 4, ... Equivalently, U(n) = U(n-1) + d = U(1) + (n-1)*d Geometric progression U(n) / U(n-1) = r, where r, the common ratio is a non-zero constant and n = 2, 3, 4, ... Equivalently, U(n) = U(n-1)*r = U(1)*r^(n-1).


If the seventh term of an arithmetic progression is 15 and th twelfth term is 17.5 find the first term?

There are 5 common differences between seventh and twelfth terms, so the CD is 2.5/5 ie 0.5. First term is therefore 15 - 6 x 0.5 = 12.


In an arithmetic progression six times the sixteenth term?

If a is the first term and r the common difference, then the nth term is tn = a * (n-1)r So t16 = a + 15r Then 6*t16 = 6(a + 15r) or 6a + 90r No further simplifiaction is possible.


What is the Formula for arithmetic progression?

An arithmetic sequence is usually given by a formula in which the nth term, T(n), is given in terms of the first term, a, and the common difference, d: t(n) = a + d*(n-1) where n= 1, 2, 3, etc An alternative is to define it iteratively. Thus: t1 = a tn = tn-1 + d , where n = 2, 3, 4, etc