There are no real reason why it is denoted by z, but that the real number axis is denoted by x, imaginary number is denoted by y, the real part of a complex number is denoted by a, the imaginary part of a complex number is denoted by b, so there is z left.
Possibly because x and y are used to denote the real and imaginary parts, respectively.
A complex number is denoted by Z=X+iY, where X is the real part and iY is the imanginary part. So the number 4 would be 4+i0 and is the real part of a complex number and so 4 by itself is just a real number, not complex.
why an set of integer denoted by z
It is the set of integers, denoted by Z.
In complex mode functions, modules, and procedures cannot operate. For a complex number z = x + yi, first define the absolute value. This would be |z| and is the distance from z to 0 in the complex plane.
Possibly because x and y are used to denote the real and imaginary parts, respectively.
Set of integers is denoted by Z, because it represents the German word Zahlen which means integers
A complex number is denoted by Z=X+iY, where X is the real part and iY is the imanginary part. So the number 4 would be 4+i0 and is the real part of a complex number and so 4 by itself is just a real number, not complex.
why an set of integer denoted by z
Symbol Z comes from the German word Zahl 'number',
It is the set of integers, denoted by Z.
A complex number (z = x + iy) can be plotted the x-y plane if we consider the complex number the point (x,y) (where x is the real part, and y is the imaginary part). So once you plot the complex number on the x-y plane, draw a line from the point to the origin. The Principle Argument of z (denoted by Arg z) is the measure of the angle from the x-axis to the line (made from connecting the point to (0,0)) in the interval (-pi, pi]. The difference between the arg z and Arg z is that arg z is an countably infinite set. And the Arg z is an element of arg z. Why? : The principle argument is needed to change a complex number in to polar representation. Polar representation makes multiplication of complex numbers very easy. z^2 is pretty simple: just multiply out (x+iy)(x+iy). But what about z^100? This is were polar represenation helps us, and to get into this representation we need the principle argument. I hope that helped.
In complex mode functions, modules, and procedures cannot operate. For a complex number z = x + yi, first define the absolute value. This would be |z| and is the distance from z to 0 in the complex plane.
The complex number of the equation z = x + iy is x.
It is Z from the German for "to count". The counting, or natural numbers are denoted by N.
-10 belongs to the set of all integers denoted by Z.
The blackboard bold style Z, used to indicate the set of integers, derives from the German word zahlen, meaning numbers.