Possibly because x and y are used to denote the real and imaginary parts, respectively.
A complex number is denoted by Z=X+iY, where X is the real part and iY is the imanginary part. So the number 4 would be 4+i0 and is the real part of a complex number and so 4 by itself is just a real number, not complex.
why an set of integer denoted by z
It is the set of integers, denoted by Z.
In complex mode functions, modules, and procedures cannot operate. For a complex number z = x + yi, first define the absolute value. This would be |z| and is the distance from z to 0 in the complex plane.
Possibly because x and y are used to denote the real and imaginary parts, respectively.
Set of integers is denoted by Z, because it represents the German word Zahlen which means integers
A complex number is denoted by Z=X+iY, where X is the real part and iY is the imanginary part. So the number 4 would be 4+i0 and is the real part of a complex number and so 4 by itself is just a real number, not complex.
why an set of integer denoted by z
Symbol Z comes from the German word Zahl 'number',
It is the set of integers, denoted by Z.
A complex number (z = x + iy) can be plotted the x-y plane if we consider the complex number the point (x,y) (where x is the real part, and y is the imaginary part). So once you plot the complex number on the x-y plane, draw a line from the point to the origin. The Principle Argument of z (denoted by Arg z) is the measure of the angle from the x-axis to the line (made from connecting the point to (0,0)) in the interval (-pi, pi]. The difference between the arg z and Arg z is that arg z is an countably infinite set. And the Arg z is an element of arg z. Why? : The principle argument is needed to change a complex number in to polar representation. Polar representation makes multiplication of complex numbers very easy. z^2 is pretty simple: just multiply out (x+iy)(x+iy). But what about z^100? This is were polar represenation helps us, and to get into this representation we need the principle argument. I hope that helped.
In complex mode functions, modules, and procedures cannot operate. For a complex number z = x + yi, first define the absolute value. This would be |z| and is the distance from z to 0 in the complex plane.
The complex number of the equation z = x + iy is x.
It is Z from the German for "to count". The counting, or natural numbers are denoted by N.
-10 belongs to the set of all integers denoted by Z.
The blackboard bold style Z, used to indicate the set of integers, derives from the German word zahlen, meaning numbers.