Why: Because that's what the derivative means, the way it is defined - the slope of the curve at any point of the line.
The answer will depend on the context. If the curve in question is a differentiable function then the gradient of the tangent is given by the derivative of the function. The gradient of the tangent at a given point can be evaluated by substituting the coordinate of the point and the equation of the tangent, though that point, is then given by the point-slope equation.
Take a tangent at the point where you want the slope. Then the slope of the graph at that point is the slope of the tangent, which is found by taking another point on the tangent and then taking the change in y between the two points and divid it by the change in x.
The rate of change on that line. This is called the tangent and is used in the application of the derivative.
When you differentiate a function, you find the slope of the function. The slope is also known as the tangent. The slope of a line, given one point, and a second point relative to the first point, but with x different, is given as delta y over delta x. Differentiation is simply taking the limit of the slope, i.e. where delta x approaches zero.
The derivative at a point measures the rate at which a function is changing at that specific point. Mathematically, it is defined as the limit of the average rate of change of the function as the interval approaches zero. This concept can be interpreted as the slope of the tangent line to the function's graph at that point. Essentially, it provides insight into how the function behaves locally around that point.
Take the derivative of the function.
Yes, the derivative of an equation is the slope of a line tangent to the graph.
When you take the derivative of a function, you are seeking a variation of that function that provides you with the slope of the tangent (instantaneous slope) at any value of (x). For example, the derivative of the function f(x)=x^2 is f'(x)=2x. Notice that the derivative is denoted by the apostrophe inside the f and (x). Also note that at x=0, f'(x)=0, which means that at x=0 the slope of the tangent is zero, which is correct for the function y=x^2.
The answer will depend on the context. If the curve in question is a differentiable function then the gradient of the tangent is given by the derivative of the function. The gradient of the tangent at a given point can be evaluated by substituting the coordinate of the point and the equation of the tangent, though that point, is then given by the point-slope equation.
The normal line at a point on a surface is drawn perpendicular to the tangent line at that point. To find it, you first determine the slope of the tangent line by calculating the derivative of the function at that point. The slope of the normal line is the negative reciprocal of the tangent line's slope. Finally, you use the point-slope form of a linear equation to draw the normal line using the calculated slope and the coordinates of the point.
Take a tangent at the point where you want the slope. Then the slope of the graph at that point is the slope of the tangent, which is found by taking another point on the tangent and then taking the change in y between the two points and divid it by the change in x.
the slope of a tangent to the curve of a V vs T graph is acceleration at that point in time. the derivative of the function for the V vs T graph would be the function for acceleration at any given time
A derivative graph tracks the slope of a function.
The rate of change on that line. This is called the tangent and is used in the application of the derivative.
For example, if the slope at a certain point is 1.5, you can draw a line that goes through the specified point, with that slope. The line would represent the slope at that point. If you want to graph the slope at ALL POINTS, take the derivative of the function, and graph the derivative. The derivative shows the slope of a function at all points.
If the graph of the function is a continuous line then the function is differentiable. Also if the graph suddenly make a deviation at any point then the function is not differentiable at that point . The slope of a tangent at any point of the graph gives the derivative of the function at that point.
When you differentiate a function, you find the slope of the function. The slope is also known as the tangent. The slope of a line, given one point, and a second point relative to the first point, but with x different, is given as delta y over delta x. Differentiation is simply taking the limit of the slope, i.e. where delta x approaches zero.