answersLogoWhite

0

What else can I help you with?

Related Questions

Why does the expected genotypic ratio often differ from the expected phenotypic ratio from monohybrid cross?

Because in heterozygotes, both alleles are transcribed and translated.


Why does the expected genotypic ratio often differ from the expected genotypic ratio resulting from a monohybrid cross?

becouse you touch yourself at night.


A homozygous dominant brown mouse is crossed with a heterozygous brown mouse (White is the recessive color)?

A pretty bow


What is the expected genotype ratio for a one-factor cross of two hybrid organisms?

The phenotypic ratio of 2 hybrids would be 3:1 while the genotypic would be 1:2:1. ChaCha on!


What is the phenotypic ratio of the?

Asuming that the F1 generation is heterozygous for a single trait and that the F2 cross is of 2 F1 offspring. Ex. Aa X Aa the phenotypic ratio is 3:1 dominant to recessive. The genotypic ratio is 1:2:1 AA:Aa:aa.


What is the expected genotypic ratios for di-hybrid cross and mono-hybrid cross?

In a dihybrid cross, the expected genotypic ratio is 1:2:1 for homozygous dominant: heterozygous: homozygous recessive genotypes, respectively. In a monohybrid cross, the expected genotypic ratio is 1:2:1 for homozygous dominant: heterozygous: homozygous recessive genotypes, respectively.


What is a monohybrid ratio?

A monohybrid ratio refers to the genotypic and phenotypic ratio seen in the offspring of a genetic cross involving only one trait. For example, in a monohybrid cross between two heterozygous individuals (Aa x Aa), the genotypic ratio among the offspring would be 1:2:1 for AA:Aa:aa, and the phenotypic ratio would be 3:1 for the dominant trait to the recessive trait.


In aquirrelsblack fur is recessive to grar fur show the genotypic and phenotypic ratios of a cross between a heterozygous gray squirrel with a black squirrel?

The genotypic ratio would be 1:2:1 (1 BB, 2 Bb, 1 bb) and the phenotypic ratio would be 3:1 (3 gray squirrels : 1 black squirrel).


What is the phenotypic of the F2 generation?

Asuming that the F1 generation is heterozygous for a single trait and that the F2 cross is of 2 F1 offspring. Ex. Aa X Aa the phenotypic ratio is 3:1 dominant to recessive. The genotypic ratio is 1:2:1 AA:Aa:aa.


What is the importance of a 9331 ratio in a monohybrid cross?

The phenotypic ratio expected from a monohybrid cross between heterozygotes is 3:1 (assuming complete dominance), with the genotypic ratio being 1:2:1. So, using tall = T, short = t and R = red, r = white as an example. A monohybrid cross of Tt X Tt would be expected to produce 3 tall plants and 1 short plant (phenotypic ratio 3:1), which would be 1 TT, 2 Tt and 1 tt (genotypic ratio 1:2:1). A dihybrid cross of heterozygotes is expected to produce a phenotypic ratio of 9:3:3:1. So the cross of TtRr X TtRr would be epected to have: 9 tall red, 3 tall white, 3 short red and 1 short white (phenotypic ratio) This is because each parent has 4 possible combinations of gametes (TR, Tr, tR and tr). There are therefore 16 combinations of gametes, providing a 9:3:3:1 phenotypic ratio. Both of these are probably best visualised using a punnett square (see link below).


If both parents were Dd then what would the phenotypic ratio be?

If both parents were Dd, they would both be heterozygous for a particular trait. The phenotypic ratio of their offspring would likely be 1 dominant : 2 heterozygous : 1 recessive. This is because the dominant allele masks the recessive allele, resulting in a 3:1 ratio.


What are the genotypic andphenotypic expectancies for a cross between a heterozygous and homozygous individual?

In this case, the genotypic expectancy would be 50% heterozygous and 50% homozygous offspring. The phenotypic expectancy would depend on the specific traits being studied and whether they exhibit dominance or recessiveness. If the trait is dominant, the phenotypic ratio would likely be 100% expressing the dominant trait.