2sinx+1 equals 0
cos2x + 2sinx - 2 = 0 (1-2sin2x)+2sinx-2=0 -(2sin2x-2sinx+1)=0 -2sinx(sinx+1)=0 -2sinx=0 , sinx+1=0 sinx=0 , sinx=1 x= 0(pi) , pi/2 , pi
the period is 2pi. period is 2pi/b and the formula is y=AsinBx.
pi radians.
The amplitude of a function is half the distance between the maximum and minimum values. This is the absolute value of the number in front of the trig function. for example, y=Asin(x) or y= Acos(x) the absolute value of A is the amplitude. Therefore, the amplitude of y=-2sinx is 2
2sinx+1 equals 0
You also need an equation for y in order to convert to rectangular form.
cos2x + 2sinx - 2 = 0 (1-2sin2x)+2sinx-2=0 -(2sin2x-2sinx+1)=0 -2sinx(sinx+1)=0 -2sinx=0 , sinx+1=0 sinx=0 , sinx=1 x= 0(pi) , pi/2 , pi
2sinx - sin3x = 0 2sinx - 3sinx + 4sin3x = 0 4sin3x - sinx = 0 sinx(4sin2x - 1) = 0 sinx*(2sinx - 1)(2sinx + 1) = 0 so sinx = 0 or sinx = -1/2 or sinx = 1/2 It is not possible to go any further since the domain for x is not defined.
2sinx
The domain is the set of all possible x values, for this problem it would be negative infinity to positive infinity. The range is the set of all possible y values, for this problem it would be -2 too +2
The period is 2*pi radians.
the period is 2pi. period is 2pi/b and the formula is y=AsinBx.
The period is the length of x over which the equation repeats itself. In this case, y=sin x delivers y=0 at x=0 at a gradient of 1. y next equals 0 when x equals pi, but at this point the gradient is minus 1. y next equals 0 when x equals 2pi, and at this point the gradient is 1 again. Therefore the period of y=sinx is 2pi.
pi radians.
The amplitude of a function is half the distance between the maximum and minimum values. This is the absolute value of the number in front of the trig function. for example, y=Asin(x) or y= Acos(x) the absolute value of A is the amplitude. Therefore, the amplitude of y=-2sinx is 2
4 sin2x = 1. Then, (2sinx)2 = 1, 2sinx = ±1, and sinx = ±½. Whence, x = 90° or 270°; or, in radians, x = π/2 or 3π/2.