15
Chat with our AI personalities
How can the following definition be written correctly as a biconditional statement? An odd integer is an integer that is not divisible by two. (A+ answer) An integer is odd if and only if it is not divisible by two
yeah3 9 15 21 27 and so on(every other multiple of three)But if you have a large number, like 755253, and don't have a calculator handy, then use sum of digits to determine if divisible by 3.Then if the number is divisible by 3 and divisible by 2, then it is also divisible by 6.So in this case: 7 + 5 + 5 + 2 + 5 + 3 = 27, which is divisible by 3, but the original number is odd, so the number is not divisible by 6.
Using the tests for divisibility:Divisible by 3:Add the digits and if the sum is divisible by 3, so is the original number: 6 + 8 + 4 = 18 which is divisible by 3, so 684 is divisible by 3Divisible by 6:Number is divisible by 2 and 3: Divisible by 2:If the number is even (last digit divisible by 2), then the whole number is divisible by 2. 684 is even so 684 is divisible by 2.Divisible by 3:Already shown above to be divisible by 3. 684 is divisible by both 2 & 3 so 684 is divisible by 6Divisible by 9:Add the digits and if the sum is divisible by 9, so is the original number: 6 + 8 + 4 = 18 which is divisible by 9, so 684 is divisible by 9Thus 684 is divisible by all 3, 6 & 9.
No. Only even numbers are divisible by 2.
If a number is divisible by both three and four, it's divisible by twelve.