answersLogoWhite

0

How can the following definition be written correctly as a biconditional statement?

An odd integer is an integer that is not divisible by two.

(A+ answer) An integer is odd if and only if it is not divisible by two

User Avatar

Nicole Sprinkle

Lvl 10
4y ago

What else can I help you with?

Related Questions

What the true biconditional statement that can be formed from the conditional statement If a number is divisible by 2 then it is even and its converse.?

The true biconditional statement that can be formed is: "A number is even if and only if it is divisible by 2." This statement combines both the original conditional ("If a number is divisible by 2, then it is even") and its converse ("If a number is even, then it is divisible by 2"), establishing that the two conditions are equivalent.


is this biconditional true or falseA number is even if and only if it is divisible by 2.?

true


How does biconditional statement different from a conditional statement?

a condtional statement may be true or false but only in one direction a biconditional statement is true in both directions


when the biconditional statement is separated into a conditional and its converse, which of these cannot be the converse?

If a number is nonzero, then the number is positive.


What does IFF mean when used in a biconditional statement?

the statement IFF means "if and only if"


Give 5 examples of biconditional statement?

A biconditional statement is a statement that connects two other statements with the phrase "if and only if." Five examples of biconditional statements are: A triangle is equilateral if and only if all of its sides are congruent. A number is divisible by 4 if and only if it is divisible by 2 twice. A polygon is a square if and only if it has four congruent sides and four right angles. A quadrilateral is a parallelogram if and only if its opposite sides are parallel. A function is continuous if and only if it is differentiable at every point in its domain.


Is the following a conjunction disjunction conditional or biconditional A number is odd if and only if it is not even?

The statement is bi-conditional. The "if and only if" should have tipped you off immediately.


Is The converse of a biconditional statement is always true?

No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.


how can the following definition be written correctly as a biconditional statementAn odd integer is an integer that is not divisible by two.?

An integer is odd if and only if it is not divisible by two.


Biconditional 2x-5 equals 11 then x equals 8?

The conditional statement is: "If 2x - 5 = 11, then x = 8" The biconditional statement is the statement that contains "if and only if". Some textbooks or mathematicians use this symbol ⇔. The biconditional statement of the given is: x = 8 ⇔ 2x - 5 = 11 OR x = 8 if and only if 2x - 5 = 11.


What is the symbol for if and only if?

The symbol for "if and only if" is ↔ or ≡. This symbol denotes a biconditional relationship where the statement on the left implies the statement on the right and vice versa.


Choose the true biconditional statement that can be formed from the conditional statement If a natural number n is odd then n2 is odd and its converse.?

An integer n is odd if and only if n^2 is odd.