b2(b + 6)
Wiki User
∙ 2012-05-03 03:24:356(a + b)(b - c)
The GCF is 1.
a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)
a3 - b3 = (a - b)(a2 + ab + b2)
6a2 + 5ab - 6b2 = (3a - 2b)(2a + 3b)
6(a + b)(b - c)
Yes.
-3b2(5b - 2)
3(2b2 - 5b - 2)
(-3b - 4)(-2b + 5)
(3a - 2b)(2a + 3b)
A3+b3
Considering the minus sign between 5ab and 6b2 then we have the polynomial as 6a2 + 5ab - 6b2. The polynomial is a quadratic polynomial.Steps to factorize a quadratic polynomial:1 - Multiply first term by third term. 6a2 x (-6b2) = -36a2b22 - If possible break the second term into two terms such that they multiple to -36a2b2. If not then it is factorized by Sridharacharya's formula.5ab can be broken as 9ab + (-4ab).These two terms multiply to give -36a2b2.So we can write 6a2 + 5ab - 6b2 = 6a2 + 9ab + (-4ab) - 6b2.6a2 + 9ab - 4ab - 6b2 = 3a(2a + 3b) - 2b(2a + 3b) = (2a + 3b)(3a - 2b).So the factors are (2a + 3b) and (3a - 2b).
The GCF is 1.
b3 - 5b2 + 12 = (b - 2)(b2 - 3b - 6)Check:(b - 2)(b2 - 3b - 6)= b(b2 - 3b - 6) - 2(b2 - 3b - 6)= b3 - 3b2 - 6b - 2b2 + 6b + 12= b3 - 5b2 + 12
kutta