there are four plant cells and they are 1 flower 2 stem 3 leaves 4 roots
Im sorry but you have posted your question wrong. You said its 4 ltters long so how can its fifth letter be m?
Grass roots typically grow to a depth of 4-6 inches, although some species can grow deeper. The depth of grass roots can also vary depending on soil conditions, climate, and grass species.
A flowering plant also known as an angiosperm have roots, leaves and stems. They are either and monocot which has 3 petals branching roots and parallel vines, Or it is a diocot which has 4 or 5 petals trap roots and branching vines.
Oak tree roots typically grow deep into the ground, ranging from 3 to 7 feet deep. However, their lateral roots can extend even farther, spreading out up to 4 times the tree's canopy width. The depth and spread of oak tree roots can vary based on soil conditions, available water, and other environmental factors.
4
if the question is w^4 = 81 {w raised to the power of 4},Then the four roots are w = {3, -3, 3i, -3i}.The plots on the real-imaginary plane would be the points:(3,0)(-3,0)(0,3)(0,-3)
7
Use the rules of division for complex numbers. Just divide 1 / (4 + 3i). This requires multiplying numerator and denominator of this fraction by (4 - 3i), to get a real number in the denominator.
0+3i has a complex conjugate of 0-3i thus when you multiply them together (0+3i)(0-3i)= 0-9i2 i2= -1 0--9 = 0+9 =9 conjugates are used to eliminate the imaginary parts
There cannot be such a polynomial. If a polynomial has rational coefficients, then any complex roots must come in conjugate pairs. In this case the conjugate for 2-3i is not a root. Consequently, either (a) the function is not a polynomial, or (b) it does not have rational coefficients, or (c) 2 - 3i is not a root (nor any other complex number), or (d) there are other roots that have not been mentioned. In the last case, the polynomial could have any number of additional (unlisted) roots and is therefore indeterminate.
There's only one: -1.31951 (rounded)The other four are complex.
To multiply complex numbers you can use the same FOIL rule that you use for multiplying binomials (First, Inside, Outside, Last).(4 - 3i)(5 + 2i) = (4)(5) +(4)(2i) - (3i)(5) - (3i)(2i) = 20 + 8i-15i - 6(i)^2= 20 -7i - 6(-1) = 20 + 6 -7i = 26 -7i.
this is a very good question. lets solve (2+3i)/(4-2i). we want to make 4-2i real by multiplying it by the conjugate, or 4+2i (4-2i)(4+2i)=16-8i+8i+4=20, now we have (2+3i)/20 0r 1/10 + 3i/20 notice that -2i times 2i = -4i^2 =-4 times -1 = 4
2
To divide by a complex number, write it as a fraction and then multiply the numerator and denominator by the complex conjugate of the denominator - this is formed by changing the sign of the imaginary bit of the number; when a complex number (a + bi) is multiplied by its complex conjugate the result is the real number a² + b² which can be divided into the complex number of the numerator: (-4 - 3i) ÷ (4 + i) = (-4 - 3i)/(4 + i) = ( (-4 - 3i)×(4 - i) ) / ( (4 + i)×(4 - i) ) = (-16 + 4i - 12i + 3i²) / (4² + 1²) = (-16 - 8i - 3) / (16 + 1) = (-19 - 8i)/17
The question has no answer in real numbers. The solution, in complex numbers, are 2+3i and 2-3i where i is the imaginary square root of -1.