That the component of the velocity towards or away from the origin is zero. You can infer nothing at all about its overall velocity since it could be travelling in a transverse direction at any velocity.
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
You cannot since the graph shows displacement in the radial direction against time. Information on transverse displacement, and therefore transverse velocity, is not shown. For example, there is no difference in the graph of you're staying still and that of your running around in a circle whose centre is the origin of the graph. In both cases, your displacement from the origin does not change and so the graph is a horizontal line. In the first case the velocity is 0 and in the second it is a constantly changing vector. All that you can find is the component of the velocity in the radial direction and this is the slope of the graph at the point in question.
The area between the graph and the x-axis is the distance moved. If the velocity is constant the v vs t graph is a straight horizontal line. The shape of the area under the graph is a rectangle. For constant velocity, distance = V * time. Time is the x-axis and velocity is the y-axis. If the object is accelerating, the velocity is increasing at a constant rate. The graph is a line whose slope equals the acceleration. The shape of the graph is a triangle. The area under the graph is ½ * base * height. The base is time, and the height is the velocity. If the initial velocity is 0, the average velocity is final velocity ÷ 2. Distance = average velocity * time. Distance = (final velocity ÷ 2) * time, time is on the x-axis, and velocity is on the y-axis. (final velocity ÷ 2) * time = ½ time * final velocity ...½ base * height = ½ time * final velocity Area under graph = distance moved Most velocity graphs are horizontal lines or sloping lines.
A position time graph can show you velocity. As time changes, so does position, and the velocity of the object can be determined. For a speed time graph, you can derive acceleration. As time changes, so does velocity, and the acceleration of the object can be determined.If you are plotting velocity (speed) versus time, the slope is the acceleration.
this time is basically the instant when an object has a particular velocity(instantaneous velocity). so on the graph draw a line from the particular value of the velocity and then draw a vertical line on time axis to find the time for that velocity.
To calculate displacement from a displacement graph, find the area under the curve. If the graph is a straight line, you can subtract the initial position from the final position. If the graph is not a straight line, calculate the integral of the graph to determine the total displacement.
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
A displacement-time graph for a boy traveling with uniform velocity to school would be a straight line that slopes upwards, indicating a constant rate of motion. The y-axis represents displacement (distance from the starting point) and the x-axis represents time. The slope of the line would represent the velocity of the boy.
On the horizontal axis you would probably plot the time. On the vertical axis you could plot displacement, velocity or acceleration.
A displacement-time graph is a visual representation that shows how an object's position changes over time. The slope of the graph indicates the object's velocity, while the area under the graph corresponds to the total distance traveled by the object.
On a graph showing the motion of an object, variables such as time (on the x-axis) and position or displacement (on the y-axis) would be used. The slope of the graph would represent the object's velocity, while the area under the curve would represent the object's displacement.
You cannot since the graph shows displacement in the radial direction against time. Information on transverse displacement, and therefore transverse velocity, is not shown. For example, there is no difference in the graph of you're staying still and that of your running around in a circle whose centre is the origin of the graph. In both cases, your displacement from the origin does not change and so the graph is a horizontal line. In the first case the velocity is 0 and in the second it is a constantly changing vector. All that you can find is the component of the velocity in the radial direction and this is the slope of the graph at the point in question.
Yes, a displacement-time graph can be parallel to the displacement axis. This occurs when an object is at rest, meaning its displacement does not change over time. In such a case, the graph would be a horizontal line, indicating that there is no movement.
The area under a velocity-time graph represents the displacement of an object over a given time interval. This area can be calculated by finding the integral of the velocity function with respect to time. If the graph is above the time axis, the displacement is positive; if it's below, the displacement is negative. The shape of the area can vary depending on the velocity function, leading to different methods for calculating it, such as using geometric shapes or calculus.
Area under velocity versus time graph(between two given instances of time i.e. two points on time axis) gives the displacement of the body( whose graph was plotted) between those two instances i.e. in that time interval. Area under velocity time graph can be found from definite integration if the graph is a curve. Note: Area under velocity versus time graph gives displacement not distance covered by body. Note: Area enclosed between the plotted curve and time axis is taken. For convenience time should be taken in the x-axis.
The area between the graph and the x-axis is the distance moved. If the velocity is constant the v vs t graph is a straight horizontal line. The shape of the area under the graph is a rectangle. For constant velocity, distance = V * time. Time is the x-axis and velocity is the y-axis. If the object is accelerating, the velocity is increasing at a constant rate. The graph is a line whose slope equals the acceleration. The shape of the graph is a triangle. The area under the graph is ½ * base * height. The base is time, and the height is the velocity. If the initial velocity is 0, the average velocity is final velocity ÷ 2. Distance = average velocity * time. Distance = (final velocity ÷ 2) * time, time is on the x-axis, and velocity is on the y-axis. (final velocity ÷ 2) * time = ½ time * final velocity ...½ base * height = ½ time * final velocity Area under graph = distance moved Most velocity graphs are horizontal lines or sloping lines.
A displacement vs. time graph illustrates the position of an object over time, with displacement on the vertical axis and time on the horizontal axis. A straight, sloped line indicates uniform motion, while a curve represents acceleration or deceleration. The slope of the line indicates the object's velocity; a steeper slope means higher velocity. When the line is horizontal, it shows that the object is at rest, with no change in displacement over time.