x2 • (5x2 + x + 8)
(3x4 + 2x3 - x2 - x - 6)/(x2 + 1)= 3x2 + 2x - 4 + (-3x - 2)/(x2 + 1)= 3x2 + 2x - 4 - (3x + 2)/(x2 + 1)where the quotient is 3x2 + 2x - 4 and the remainder is -(3x + 2).
x2 + x2 = 2x2
x2 + x2 = 2x2
x4 +x2 =x2 (x2+1)
For a single term, the "degree" refers to the power. The coefficient is the number in front of (to the left of) the x.
x2 • (5x2 + x + 8)
(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40R∴ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)
-2x3 + 2x2 + 12x =(-2x) (x2 - x - 6) =(-2x) (x+2) (x-3)
(3x4 + 2x3 - x2 - x - 6)/(x2 + 1)= 3x2 + 2x - 4 + (-3x - 2)/(x2 + 1)= 3x2 + 2x - 4 - (3x + 2)/(x2 + 1)where the quotient is 3x2 + 2x - 4 and the remainder is -(3x + 2).
2x3 + 16 = 2(x3 + 8) = 2(x3 + 23) = 2(x + 2)(x2 - 2x + 22) = 2(x + 2)(x2 - 2x + 4)
If that's 2x2, the answer is (x + 2)(x2 + 4)
Do you want its factorisation? 2x3 + 2x2 - 12x = 2x(x2 + x - 6) = 2x(x + 3)(x - 2).
x2 × 2x = 2x3
-2x3 + 2x2 + 12x = -2x(x2 - x - 6) = -2x(x2 + 2x - 3x - 6) = -2x[ x(x + 2) - 3(x + 2) ] = -2x(x - 3)(x + 2)
(-2x3 - 2x2 + 12x) = -2x (x2 + x - 6) = -2x (x + 3) (x - 2)
(x-2) is NOT a factor APEX 2021