No. "Quadratic" means degree of 2.
That means that you divide one polynomial by another polynomial. Basically, if you have polynomials "A" and "B", you look for a polynomial "C" and a remainder "R", such that: B x C + R = A ... such that the remainder has a lower degree than polynomial "B", the polynomial by which you are dividing. For example, if you divide by a polynomial of degree 3, the remainder must be of degree 2 or less.
The quadratic formula can be used to find the solutions of a quadratic equation - not a linear or cubic, or non-polynomial equation. The quadratic formula will always provide the solutions to a quadratic equation - whether the solutions are rational, real or complex numbers.
There are infinitely many options. The equation could be a polynomial of degree greater than 1, or it could be a power function, a log function or any combination of these with trig functions. The problem is exacerbated by the fact that there is no clue in the question as to what a stands for.
A polynomial is an equation with more than 1 term. A term could be a constant, or a power of a variable (denoted by a letter, like x) times a constant. The order of the polynomial is determined by the highest power of the variable.A quadratic is a second order polynomial, because the highest power of x is x2.A first order polynomial has x1 (which is just x) as the highest power.
No. "Quadratic" means degree of 2.
No.
True. A polynomial of degree zero is defined as a polynomial where the highest degree term has a degree of zero. This means that the polynomial is a constant term, as it does not contain any variables raised to a power greater than zero. Therefore, a polynomial of degree zero is indeed a constant term.
more than one variable
The degree of a polynomial is the highest exponent in the polynomial.
7x2 - 5x + 4 is not a monomial because it has more than one term. It is a quadratic polynomial.
Those words refer to the degree, or highest exponent that modifies a variable, or the polynomial.Constant=No variables in the polynomialLinear=Variable raised to the first powerQuadratic=Variable raised to the second power (or "squared")Cubic=Variable raised to the third power (or "cubed")Quartic=Variable raised to the fourth powerQuintic=Variable raised to the fifth powerAnything higher than that is known as a "6th-degree" polynomial, or "21st-degree" polynomial. It all depends on the highest exponent in the polynomial. Remember, exponents modifying a constant (normal number) do not count.
That means that you divide one polynomial by another polynomial. Basically, if you have polynomials "A" and "B", you look for a polynomial "C" and a remainder "R", such that: B x C + R = A ... such that the remainder has a lower degree than polynomial "B", the polynomial by which you are dividing. For example, if you divide by a polynomial of degree 3, the remainder must be of degree 2 or less.
Only when the discriminant of the quadratic expression is equal to or greater than zero
The quadratic formula can be used to find the solutions of a quadratic equation - not a linear or cubic, or non-polynomial equation. The quadratic formula will always provide the solutions to a quadratic equation - whether the solutions are rational, real or complex numbers.
Polynomials can be classified based on the number of terms they contain. A polynomial with one term is called a monomial, such as 5x or -2y^2. A polynomial with two terms is called a binomial, like 3x + 2 or 4y - 7. A polynomial with three terms is called a trinomial, for example, 2x^2 + 5x - 3. Polynomials with more than three terms are simply referred to as polynomials.
The degree of a polynomial is the highest power that appears in the polynomial. For more than one variable, you must add the powers for each variable, for example, a3b2 is of degree 3 + 2 = 5.