Yes. To name a few: Radius (the distance from the center of a circle to the edge) Rate (a percent representing interest in finances) Reflexive property (a=a) Reflection ("flipping" a shape across a line)
nCr=n!/r!/(n-r)!
Pi r 2. Pi is a numerical constant roughly 3.142. r is the radius of a circle. 2 in this case is the square of the radius. All this adds up to the area of a circle. Area=Pi x (radius squared)
9r-- think of the 'r' as '1r' and add like you normally would.
Geometric Sequences work like this. You start out with some variable x. Your multiplication distance between terms is r. Your second term would come out to x*r, your third x*r*r, and so on. If there are n terms in the sequence, your final term will be x*r^(n-1).
nCr=n!/(r!(n-r)!)
· radius · rectangle · remainder · right angle
range, rounding, radius, rational number, rhombus, regular shape, right angle, reflection
I have my math final tomorrow and I don't remember the quick method to finding the r value when they are not consecutive terms, please help me. n1=1/81, n3=1/3
nCr=n!/r!/(n-r)!
if You meant to ask r or TM in commerce terms...then the answer is r for registered and TM for trademark tr does not have any meaning but can be used for postal codes
Oh, dude, expressing "r" in terms of "c" and "pi" is like a walk in the park... if the park was full of math nerds. You just divide "c" by 2pi, and boom, there's your radius. Easy peasy, lemon squeezy.
24
A lower case "r."
Pi r 2. Pi is a numerical constant roughly 3.142. r is the radius of a circle. 2 in this case is the square of the radius. All this adds up to the area of a circle. Area=Pi x (radius squared)
They use math for like if they r turing around
RADIUS
R