answersLogoWhite

0

Standard deviation can be calculated using non-normal data, but isn't advised. You'll get abnormal results as the data isn't properly sorted, and the standard deviation will have a large window of accuracy.

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: Can standard deviation be calculated for non normal data?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

Does variance and standard deviation assume nominal data?

No. Variance and standard deviation are dependent on, but calculated irrespective of the data. You do, of course, have to have some variation, otherwise, the variance and standard deviation will be zero.


What determines the standard deviation to be high?

Standard deviation is a measure of the scatter or dispersion of the data. Two sets of data can have the same mean, but different standard deviations. The dataset with the higher standard deviation will generally have values that are more scattered. We generally look at the standard deviation in relation to the mean. If the standard deviation is much smaller than the mean, we may consider that the data has low dipersion. If the standard deviation is much higher than the mean, it may indicate the dataset has high dispersion A second cause is an outlier, a value that is very different from the data. Sometimes it is a mistake. I will give you an example. Suppose I am measuring people's height, and I record all data in meters, except on height which I record in millimeters- 1000 times higher. This may cause an erroneous mean and standard deviation to be calculated.


What are the units of measurement of standard deviation?

Standard deviation has the same unit as the data set unit.


What a large standard deviation means?

A large standard deviation means that the data were spread out. It is relative whether or not you consider a standard deviation to be "large" or not, but a larger standard deviation always means that the data is more spread out than a smaller one. For example, if the mean was 60, and the standard deviation was 1, then this is a small standard deviation. The data is not spread out and a score of 74 or 43 would be highly unlikely, almost impossible. However, if the mean was 60 and the standard deviation was 20, then this would be a large standard deviation. The data is spread out more and a score of 74 or 43 wouldn't be odd or unusual at all.


What does standard deviation show us about a set of scores?

Standard Deviation tells you how spread out the set of scores are with respects to the mean. It measures the variability of the data. A small standard deviation implies that the data is close to the mean/average (+ or - a small range); the larger the standard deviation the more dispersed the data is from the mean.