answersLogoWhite

0

You can give hundreds of examples, but a single counterexample shows that natural numbers are NOT closed under subtraction or division. For example, 1 - 2 is NOT a natural number, and 1 / 2 is NOT a natural number.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: Give ten examples of natural number are closed under subtraction and division?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

Are rational numbers are closed under addition subtraction multiplication and division?

They are closed under all except that division by zero is not defined.


Which sets of numbers are closed under subtraction?

To be closed under an operation, when that operation is applied to two member of a set then the result must also be a member of the set. Thus the sets ℂ (Complex numbers), ℝ (Real Numbers), ℚ (Rational Numbers) and ℤ (integers) are closed under subtraction. ℤ+ (the positive integers), ℤ- (the negative integers) and ℕ (the natural numbers) are not closed under subtraction as subtraction can lead to a result which is not a member of the set.


What are the characteristics of integers?

Integers are the natural numbers (counting numbers: 1,2,3,etc.), and their negative counterparts, and zero. The set of Integers is closed for addition, subtraction, and multiplication, but not division. Closed means that the answer will be a part of the set. Example: 1/3 (1 divided by 3 equals one third) is not an integer, even though both 1 and 3 are integers.


Under what operation is the set of positive rational numbers not closed?

Subtraction.


When is a set of negative irrational numbers closed?

It cannot be closed under the four basic operations (addition, subtraction, multiplication, division) because it is indeed possible to come up with two negative irrational numbers such that their sum/difference/product/quotient is a rational number, indicating that the set is not closed. You will have to think of a different operation.