Use the following integral to find the first and second moments. The mean is, of course, the first moment and the variance is the second moment minus the first moment squared. :<math>\int_{0}^{\infty} x^{n} e^{-ax^2}\,\mathrm{d}x =
\begin{cases}
\frac{1}{2}\Gamma \left(\frac{n+1}{2}\right)/a^{\frac{n+1}{2}} & (n>-1,a>0) \\
\frac{(2k-1)!!}{2^{k+1}a^k}\sqrt{\frac{\pi}{a}} & (n=2k, k \;\text{integer}, a>0) \\
\frac{k!}{2a^{k+1}} & (n=2k+1,k \;\text{integer}, a>0)
\end{cases} </math> (!! is the [[Double factorial]])
Chat with our AI personalities
yes
The normal distribution can have any real number as mean and any positive number as variance. The mean of the standard normal distribution is 0 and its variance is 1.
yes
Z is a variable with mean 0 and variance 1.Z is a variable with mean 0 and variance 1.Z is a variable with mean 0 and variance 1.Z is a variable with mean 0 and variance 1.
Variance