answersLogoWhite

0

Many different techniques are used for different types of functions. Take a course in calculus. Refer to the link.

User Avatar

Wiki User

16y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor

Add your answer:

Earn +20 pts
Q: How do you find the derivative of a function?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

How do you find second derivative of a function?

All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2


How do you find the slope of a tangent?

Take the derivative of the function.


What is the derivative of e2x-1?

3


What is the difference between nonlinear and linear functions?

Linear function:No variable appears in the function to any power other than 1.A periodic input produces no new frequencies in the output.The function's first derivative is a number; second derivative is zero.The graph of the function is a straight line.Non-linear function:A variable appears in the function to a power other than 1.A periodic function at the input produces new frequencies in the output.The function's first derivative is a function; second derivative is not zero.The graph of the function is not a straight line.


What is the relationship between a function and its derivative?

The derivative if a function is basically it's slope, or its rate of change. An example is the function y = 4x - 6. This is a line with a slope of 4. The derivative is y' = 4. Another example is the function y = 3x2. This is a parabola with a vertex at (0,0). Its derivative is y' = 6x. At x = 0, the slope of the parabola is 6*0, which is 0, since this is the vertex of the parabola. To the left, at x is -4 for example, the derivative (and therefore slope) is negative. To the right, at x = 5 for example, the derivative is positive. The farther away from the vertex, the greater the value of the derivative so the the slope of the function increases as you move away from the vertex (it gets steeper).