answersLogoWhite

0

A parabola opens upwards if the quadratic coefficient - the number before the "x2" is positive; downward if it is negative. Note that x2 is the same as 1x2.

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

Determine whether the parabola y equals -x2 plus 15x plus 8 opens up down left or right?

when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up


How does the value of a variable affect the direction the parabola opens?

If the value of the variable is negative then the parabola opens downwards and when the value of variable is positive the parabola opens upward.


How does the value of c affect the direction the parabola opens?

if the value is negative, it opens downard


What direction does the parabola open?

If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].


What is the standard form of the equation of a parabola that opens up or down?

The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.


Which equation describes a parabola that opens up or down and whose vertex is at the point (h v)?

The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.


What a parabola the extreme point (which is the highest lowest or farthest point left or right) is called the?

The extreme point of a parabola is called the vertex. In a parabola that opens upwards, the vertex represents the lowest point, while in a parabola that opens downwards, it represents the highest point. The vertex is a crucial feature for understanding the shape and direction of the parabola.


How do you tell if a parabola opens up or down?

To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.


What is an equation that describes a parabola that opens left or right and whose vertex is at the point (h v)?

An equation that describes a parabola opening left or right with its vertex at the point ((h, v)) can be expressed as ((y - v)^2 = 4p(x - h)), where (p) determines the direction and width of the parabola. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.


In which direction will this parabola open y-8(x plus 5)2 plus 2?

The given equation of the parabola is in the vertex form (y - 8 = a(x + 5)^2 + 2). Here, (a) is the coefficient of the squared term. Since the coefficient of ((x + 5)^2) is positive (as it's implied to be 1), the parabola opens upwards. Therefore, the parabola opens in the direction of positive y-values.


What do you notice the shape of the graph x of the quadratic function yax2?

The shape of the graph of the quadratic function ( y = ax^2 ) is a parabola. If the coefficient ( a ) is positive, the parabola opens upwards, while if ( a ) is negative, it opens downwards. The vertex of the parabola is its highest or lowest point, depending on the direction it opens. The axis of symmetry is the vertical line that passes through the vertex, dividing the parabola into two mirror-image halves.


What is the coefficient of the squared expression in the parabolas equation?

The coefficient of the squared term in a parabola's equation, typically expressed in the standard form (y = ax^2 + bx + c), is represented by the value (a). This coefficient determines the direction and the width of the parabola: if (a > 0), the parabola opens upwards, and if (a < 0), it opens downwards. The larger the absolute value of (a), the narrower the parabola.