A parabola opens upwards if the quadratic coefficient - the number before the "x2" is positive; downward if it is negative. Note that x2 is the same as 1x2.
when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up
A parabola opening up has a minimum, while a parabola opening down has a maximum.
Upwards.
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
To have a parabola with only one x-intercept, the vertex of the parabola must lie on the x-axis. This means the parabola opens either upwards or downwards, depending on the coefficient of the squared term in the equation. If the coefficient is positive, the parabola opens upwards, and if it is negative, the parabola opens downwards. By adjusting the coefficients in the equation of the parabola, you can position the vertex such that there is only one x-intercept.
when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up
If the value of the variable is negative then the parabola opens downwards and when the value of variable is positive the parabola opens upward.
if the value is negative, it opens downard
If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].
The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
The extreme point of a parabola is called the vertex. In a parabola that opens upwards, the vertex represents the lowest point, while in a parabola that opens downwards, it represents the highest point. The vertex is a crucial feature for understanding the shape and direction of the parabola.
To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
An equation that describes a parabola opening left or right with its vertex at the point ((h, v)) can be expressed as ((y - v)^2 = 4p(x - h)), where (p) determines the direction and width of the parabola. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
The given equation of the parabola is in the vertex form (y - 8 = a(x + 5)^2 + 2). Here, (a) is the coefficient of the squared term. Since the coefficient of ((x + 5)^2) is positive (as it's implied to be 1), the parabola opens upwards. Therefore, the parabola opens in the direction of positive y-values.
The shape of the graph of the quadratic function ( y = ax^2 ) is a parabola. If the coefficient ( a ) is positive, the parabola opens upwards, while if ( a ) is negative, it opens downwards. The vertex of the parabola is its highest or lowest point, depending on the direction it opens. The axis of symmetry is the vertical line that passes through the vertex, dividing the parabola into two mirror-image halves.
The coefficient of the squared term in a parabola's equation, typically expressed in the standard form (y = ax^2 + bx + c), is represented by the value (a). This coefficient determines the direction and the width of the parabola: if (a > 0), the parabola opens upwards, and if (a < 0), it opens downwards. The larger the absolute value of (a), the narrower the parabola.