answersLogoWhite

0

A parabola opens upwards if the quadratic coefficient - the number before the "x2" is positive; downward if it is negative. Note that x2 is the same as 1x2.

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

Determine whether the parabola y equals -x2 plus 15x plus 8 opens up down left or right?

when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up


How does the value of a variable affect the direction the parabola opens?

If the value of the variable is negative then the parabola opens downwards and when the value of variable is positive the parabola opens upward.


How does the value of c affect the direction the parabola opens?

if the value is negative, it opens downard


What direction does the parabola open?

If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].


How do you tell if a parabola opens up or down?

To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.


In which direction will this parabola open y-8(x plus 5)2 plus 2?

The given equation of the parabola is in the vertex form (y - 8 = a(x + 5)^2 + 2). Here, (a) is the coefficient of the squared term. Since the coefficient of ((x + 5)^2) is positive (as it's implied to be 1), the parabola opens upwards. Therefore, the parabola opens in the direction of positive y-values.


Why is any parabola that opens upward or downward a function?

It is a function because for every point on the horizontal axis, the parabola identified one and only one point in the vertical direction.


Which equation describes a parabola that opens left or right and whose vertex is at the point (hv)?

The equation that describes a parabola opening left or right with its vertex at the point ((h, k)) is given by ((y - k)^2 = 4p(x - h)), where (p) determines the direction and width of the parabola. If (p > 0), the parabola opens to the right, while if (p < 0), it opens to the left. Here, ((h, k)) represents the vertex coordinates.


How do you write an equation for a parabola in standard form?

To write an equation for a parabola in standard form, use the format ( y = a(x - h)^2 + k ) for a vertical parabola or ( x = a(y - k)^2 + h ) for a horizontal parabola. Here, ((h, k)) represents the vertex of the parabola, and (a) determines the direction and width of the parabola. If (a > 0), the parabola opens upwards (or to the right), while (a < 0) indicates it opens downwards (or to the left). To find the specific values of (h), (k), and (a), you may need to use given points or the vertex of the parabola.


Can a parabola have both a maximum and minimum point?

No, a parabola cannot have both a maximum and minimum point. A parabola opens either upwards or downwards; if it opens upwards, it has a minimum point, and if it opens downwards, it has a maximum point. Thus, a parabola can only have one of these extrema, not both.


The equation y -3x2 describes a parabola. Which way does the parabola open?

The given terms can't be an equation without an equality sign but a negative parabola opens down wards whereas a positive parabola opens up wards.


What is maximum or minimum of a parabola depending on whether the parabola opens up or down?

Vertex