A parabola opens upwards if the quadratic coefficient - the number before the "x2" is positive; downward if it is negative. Note that x2 is the same as 1x2.
when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up
A parabola opening up has a minimum, while a parabola opening down has a maximum.
Upwards.
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
To have a parabola with only one x-intercept, the vertex of the parabola must lie on the x-axis. This means the parabola opens either upwards or downwards, depending on the coefficient of the squared term in the equation. If the coefficient is positive, the parabola opens upwards, and if it is negative, the parabola opens downwards. By adjusting the coefficients in the equation of the parabola, you can position the vertex such that there is only one x-intercept.
when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up
If the value of the variable is negative then the parabola opens downwards and when the value of variable is positive the parabola opens upward.
if the value is negative, it opens downard
If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].
It is a function because for every point on the horizontal axis, the parabola identified one and only one point in the vertical direction.
The given terms can't be an equation without an equality sign but a negative parabola opens down wards whereas a positive parabola opens up wards.
Vertex
When you look at the parabola if it opens downwards then the parabola has a maximum value (because it is the highest point on the graph) if it opens upward then the parabola has a minimum value (because it's the lowest possible point on the graph)
The highest point of a parabola is called the "maximum," while the lowest point is referred to as the "minimum." These points occur at the vertex of the parabola. If the parabola opens upwards, it has a minimum point, and if it opens downwards, it has a maximum point.
A parabola opening up has a minimum, while a parabola opening down has a maximum.
In a quadratic equation of the form (y = ax^2 + bx + c), the value of (a) determines the width of the parabola. If (|a|) is greater than 1, the parabola is narrower, indicating that it opens more steeply. Conversely, if (|a|) is less than 1, the parabola is wider, meaning it opens more gently. The sign of (a) also affects the direction of the opening: positive values open upwards, while negative values open downwards.
The maximum.