An inequality determines a region of space in which the solutions for that particular inequality. For a system of inequalities, these regions may overlap. The solution set is any point in the overlap. If the regions do not overlap then there is no solution to the system.
It depends on whether the inequalities are strict or not.
yes
The solution to a system of inequalities is where the solutions to each of the individual inequalities intersect. When given a set of graphs look for the one which most closely represents the intersection, this one will contain the most of the solution to the the system but the least extra.
the answer is true
I) x>0 II) y>0 The first quadrant is the part of the coordinate plane where x and y are both positive. The above system states precisely that, and actually any point in the first quadrant is a solution to the above system of inequalities.
Which system of inequalities has a solution set that is a line?
To determine the graph that represents the solution set of a system of inequalities, you need to plot each inequality on a coordinate plane. The solution set will be the region where the shaded areas of all inequalities overlap. Typically, the boundaries of the inequalities will be represented by solid lines (for ≤ or ≥) or dashed lines (for < or >). Identifying the correct graph involves checking which regions satisfy all the inequalities simultaneously.
To determine the solution region for a system of inequalities, first graph each inequality on the same coordinate plane. For linear inequalities, use a dashed line for "less than" or "greater than" and a solid line for "less than or equal to" or "greater than or equal to." Shade the region that satisfies each inequality; the solution region is where all shaded areas overlap. This overlapping area represents all the points that satisfy all inequalities in the system.
If the equations or inequalities have the same slope, they have no solution or infinite solutions. If the equations/inequalities have different slopes, the system has only one solution.
To determine which points are solutions to a system of inequalities, you need to assess whether each point satisfies all the inequalities in the system. This involves substituting the coordinates of each point into the inequalities and checking if the results hold true. A point is considered a solution if it makes all the inequalities true simultaneously. Graphically, solutions can be found in the region where the shaded areas of the inequalities overlap.
When there is an ordered pair that satisfies both inequalities.
It is a point that may or may not be a solution to the system - depending on whether or not the inequalities are strict.
Not every system of inequalities has a solution. A system of inequalities can be inconsistent, meaning that there are no values that satisfy all inequalities simultaneously. For example, the inequalities (x < 1) and (x > 2) cannot be satisfied at the same time, resulting in no solution. However, many systems do have solutions, which can be represented as a feasible region on a graph.
Which system of inequalities has no solution?A.y > 3x - 1y < 3x - 3B.y > 3x + 3y < 3x + 7C.y > -1y < 2y > 2x - 3re...
It depends on whether the inequalities are strict or not.
A system of two linear inequalities can have no solution when the inequalities represent parallel lines that do not intersect. This occurs when the lines have the same slope but different y-intercepts. In such cases, there is no set of values that can satisfy both inequalities simultaneously, resulting in an empty solution set.
yes