If you mean endpoints of (-1, -3) and (11, -8) then the length works out as 13
h
Draw the circle O, and the chord AB. From the center, draw the radius OC which passes though the midpoint, D, of AB. Since the radius OC bisects the chord AB, it is perpendicular to AB. So that CD is the required height, whose length equals to the difference of the length of the radius OC and the length of its part OD. Draw the radius OA and OB. So that OD is the median and the height of the isosceles triangle AOB, whose length equals to √(r2 - AB2/4) (by the Pythagorean theorem). Thus, the length of CD equals to r - √(r2 - AB2/4).
If CB is the hypotenuse, then AB measures, √ (62 - 52) = √ 11 = 3.3166 (4dp) If AB is the hypotenuse then it measures, √ (62 + 52) = √ 61 = 7.8102 (4dp)
C minus B equals AB
8.8 Units
Negative times negative equals positve, so -a*-b=ab (positive ab)
8 1/3 = ab^-1, 1.8 =ab^2
4.9
6.2
17
14
h
24
16.7 is d ans
It can be but need not be.
Draw the circle O, and the chord AB. From the center, draw the radius OC which passes though the midpoint, D, of AB. Since the radius OC bisects the chord AB, it is perpendicular to AB. So that CD is the required height, whose length equals to the difference of the length of the radius OC and the length of its part OD. Draw the radius OA and OB. So that OD is the median and the height of the isosceles triangle AOB, whose length equals to √(r2 - AB2/4) (by the Pythagorean theorem). Thus, the length of CD equals to r - √(r2 - AB2/4).
AB negative is a RH negative blood type.