A quadratic equation has two roots. They may be similar or dissimilar. As the highest power of a quadratic equation is 2 , there are 2 roots. Similarly, in the cubic equation, the highest power is 3, so it has three equal or unequal roots. So the highest power of an equation is the answer to the no of roots of that particular equation.
Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.
No real roots but the roots are a pair of complex conjugates.
Because it's part of the quadratic equation formula in finding the roots of a quadratic equation.
If the equation has real coefficients, and 5 - i is a root, then its conjugate, 5 + i must be a root.Since 5 - i and 5 + i are roots, then (x - 5 + i) and (x - 5 - i) are factors.That means x2 - 10x + 26 is a factor.The other root is x = -3 so x + 3 is the other factor.So the cubic is (x + 3)*(x2 - 10x + 26) = 0That is x3 - 7x2 - 4x + 78 = 0
A quadratic equation has two roots. They may be similar or dissimilar. As the highest power of a quadratic equation is 2 , there are 2 roots. Similarly, in the cubic equation, the highest power is 3, so it has three equal or unequal roots. So the highest power of an equation is the answer to the no of roots of that particular equation.
A cubic has from 1 to 3 real solutions. The fact that every cubic equation with real coefficients has at least 1 real solution comes from the intermediate value theorem. The discriminant of the equation tells you how many roots there are.
Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.Yes. A cubic equation can have 3 real roots. Depending on their size, each of three intervals could contain a root. In that case different intervals must give different roots.
It will then have 2 different roots If the discriminant is zero than it will have have 2 equal roots
That depends on the equation.
2 roots
The roots of the equation
If the discriminant of the quadratic equation is zero then it will have 2 equal roots. If the discriminant of the quadratic equation is greater than zero then it will have 2 different roots. If the discriminant of the quadratic equation is less than zero then it will have no roots.
Either "roots" or "solutions".
Such an equation has a total of six roots; the number of real roots must needs be even. Thus, depending on the specific equation, the number of real roots may be zero, two, four, or six.
The main operation on the cubic root is finding the value of the cubic root of a number. This is commonly represented by using the symbol ∛, such as ∛x. Other related operations include estimating the value of the cubic root, solving equations involving cubic roots, and using properties of cubic roots in mathematical calculations.
It can tell you three things about the quadratic equation:- 1. That the equation has 2 equal roots when the discriminant is equal to zero. 2. That the equation has 2 distinctive roots when the discriminant is greater than zero. £. That the equation has no real roots when the discriminant is less than zero.