In this case, the discriminant is less than zero and the graph of this parabola lies above the x-axis. It never crosses.
If the discriminant = 0 then the graph touches the x axis at one point If the discriminant > 0 then the graph touches the x axis at two ponits If the discriminant < 0 then the graph does not meet the x axis
It will cross the x-axis twice.
The discriminant is the expression under the square root of the quadratic formula.For a quadratic equation: f(x) = ax2 + bx + c = 0, can be solved by the quadratic formula:x = (-b +- sqrt(b2 - 4ac)) / (2a).So if you graph y = f(x) = ax2 + bx + c, then the values of x that solve [ f(x)=0 ] will yield y = 0. The discriminant (b2 - 4ac) will tell you something about the graph.(b2 - 4ac) > 0 : The square root will be a real number and the root of the equation will be two distinct real numbers, so the graph will cross the x-axis at two different points.(b2 - 4ac) = 0 : The square root will be zero and the roots of the equation will be a real number double root, so the graph will touch the x-axis at only one points.(b2 - 4ac) < 0 : The square root will be imaginary, and the roots of the equation will be two complex numbers, so the graph will not touch the x-axis.So by looking at the graph, you can tell if the discriminant is positive, negative, or zero.
2
It will touch it at exactly 1 point. If a quadratic function is given as f(x) = ax2 + bx + c, let the discriminant be denoted as D. Then the graph of y = f(x) will cross the x-axis at the x-values x = (-b + sqrt(D))/(2a) and x = (-b - sqrt(D))/(2a). When the discriminant D = 0, these 2 x-values are actually the same. Thus the graph will touch the x-axis only once.
If the discriminant is negative, the equation has no real solution - in the graph, the parabola won't cross the x-axis.
A graph of an equation in the form y = ax^2 + bx + c will cross the y-axis once - whatever its discriminant may be.
If the discriminant = 0 then the graph touches the x axis at one point If the discriminant > 0 then the graph touches the x axis at two ponits If the discriminant < 0 then the graph does not meet the x axis
The graph will cross the y-axis once but will not cross or touch the x-axis.
It has a complete lack of any x-intercepts.
If the discriminant of a quadratic equation is positive, it indicates that the equation has two distinct real roots. This means that the graph of the equation intersects the x-axis at two points. A positive discriminant also suggests that the solutions are not repeated and that the parabola opens either upward or downward, depending on the leading coefficient.
It will cross the x-axis twice.
It will touch the x-axis and not cross it.
Discriminant = (-10)2 - 4*5*(-2) = 100 + 40 > 0 So the quadratic has two real roots ie it crosses the x-axis twice.
Once.
It will touch it once.
The discriminant is the expression under the square root of the quadratic formula.For a quadratic equation: f(x) = ax2 + bx + c = 0, can be solved by the quadratic formula:x = (-b +- sqrt(b2 - 4ac)) / (2a).So if you graph y = f(x) = ax2 + bx + c, then the values of x that solve [ f(x)=0 ] will yield y = 0. The discriminant (b2 - 4ac) will tell you something about the graph.(b2 - 4ac) > 0 : The square root will be a real number and the root of the equation will be two distinct real numbers, so the graph will cross the x-axis at two different points.(b2 - 4ac) = 0 : The square root will be zero and the roots of the equation will be a real number double root, so the graph will touch the x-axis at only one points.(b2 - 4ac) < 0 : The square root will be imaginary, and the roots of the equation will be two complex numbers, so the graph will not touch the x-axis.So by looking at the graph, you can tell if the discriminant is positive, negative, or zero.