The truth values.
q + p
If p then q is represented as p -> q Negation of "if p then q" is represented as ~(p -> q)
p-q
By definition, every rational number x can be expressed as a ratio p/q where p and q are integers and q is not zero. Consider -p/q. Then by the properties of integers, -p is an integer and is the additive inverse of p. Therefore p + (-p) = 0Then p/q + (-p/q) = [p + (-p)] /q = 0/q.Also, -p/q is a ratio of two integers, with q non-zero and so -p/q is also a rational number. That is, -p/q is the additive inverse of x, expressed as a ratio.
p --> q and q --> p are not equivalent p --> q and q --> (not)p are equivalent The truth table shows this. pq p --> q q -->(not)p f f t t f t t t t f f f t t t t
there are 32 types of thesis statements possible
There is big deal. x and y are commonly used as variables, p and q are used a statements in logic.
Then p/q is a rational number.
Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.
It is an if and only if (often shortened to iff) is usually written as p <=> q. This is also known as Equivalence. If you have a conditional p => q and it's converse q => p we can then connect them with an & we have: p => q & q => p. So, in essence, Equivalence is just a shortened version of p => q & q => p .
Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r
The sum of p and q means (p+q). The difference of p and q means (p-q).
q + p
Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q
If p = 50 of q then q is 2% of p.
If p then q is represented as p -> q Negation of "if p then q" is represented as ~(p -> q)
any number is called rational if it can be written in the form p/q where p and q are integers and q is not zero. In the case q is 1, we have the integers themselves. In the case where p/q can not be further simplified and q is not 1 or 0, then it is what many people call a fraction.