from 1-9 have 9 numbers so that we have 9*9*9*9*9=59049 Consider the case of 5-digit number combinations, where each is some digit from 1 through 9. There are 9 different digits you can pick for the first number. Assuming you can have repeats, there are 9 you can pick for the second, 9 you can pick for the third, and 9 you can pick for the fourth and 9 you can pick for the fifth.
Chat with our AI personalities
The answer will depend on how many digits there are in each of the 30 numbers. If the 30 numbers are all 6-digit numbers then the answer is NONE! If the 30 numbers are the first 30 counting numbers then there are 126 combinations of five 1-digit numbers, 1764 combinations of three 1-digit numbers and one 2-digit number, and 1710 combinations of one 1-digit number and two 2-digit numbers. That makes a total of 3600 5-digit combinations.
To find the number of 5-digit combinations from 1 to 20, we first calculate the total number of options for each digit position. Since the range is from 1 to 20, there are 20 options for the first digit, 20 options for the second digit, and so on. Therefore, the total number of 5-digit combinations is calculated by multiplying these options together: 20 x 20 x 20 x 20 x 20 = 3,200,000 combinations.
105 = 100000
Oh, dude, let me break it down for you. So, to find the number of 5-digit combinations from 1 to 60, you just do 60 minus 1 plus 1, which gives you 60. So, there are like 60 different 5-digit number combinations you can make from that range. Easy peasy, lemon squeezy!
There are 18 numbers with 2 digits that are divisible by 5. First 2 digit number is 10 → 10 ÷ 5 = 2 → first 2 digit number divisible by 25 is 5 × 2 Last 2 digit number is 99 → 99 ÷ 5 = 19 4/5 → last 2 digit number divisible by 5 is 5 × 19 → There are 19 - 2 + 1 = 18 numbers with 2 digit divisible by 5.