Just 1.
Any 5 from 59 = 5006386
How many four digit combinations can be made from the number nine? Example, 1+1+2+5=9.
For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.
There are 9 1-digit numbers and 16-2 digit numbers. So a 5 digit combination is obtained as:Five 1-digit numbers and no 2-digit numbers: 126 combinationsThree 1-digit numbers and one 2-digit number: 1344 combinationsOne 1-digit numbers and two 2-digit numbers: 1080 combinationsThat makes a total of 2550 combinations. This scheme does not differentiate between {13, 24, 5} and {1, 2, 3, 4, 5}. Adjusting for that would complicate the calculation considerably and reduce the number of combinations.
If the same 7 digits are used for all the combinations then n! = 7! = 7*6*5*4*3*2*1 = 5040 combinations There are 9,999,999-1,000,000+1=9,000,000 7-digit numbers.
There are 126 different 5 digit combinations. Note that the combination 12345 is the same as the combination 45312.
12345, 23451, 34512, 45123, 51234 lol easy
To find the number of 3-digit combinations that can be made from the digits 1, 2, 3, 4, and 5, we consider that each digit can be used only once in each combination. The number of combinations is calculated using the formula for combinations: ( \binom{n}{r} ), where ( n ) is the total number of items to choose from, and ( r ) is the number of items to choose. Here, ( n = 5 ) and ( r = 3 ), so the number of combinations is ( \binom{5}{3} = 10 ).
120 5-digit numbers can be made with the numbers 12345.
There are 5,461,512 such combinations.
105 = 100000
about 1,0000000000000
12345
It depends on how many digit you are choosing from.
100
Any 5 from 59 = 5006386
5 ^12