There are infinitely many multiples of each; they start:
The multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204, 207, 210, 213, 216, 219, 222, 225, 228, 231, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 270, 273, 276, 279, 282, 285, 288, 291, 294, 297, 300, ...
The multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 300, 304, 308, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 356, 360, 364, 368, 372, 376, 380, 384, 388, 392, 396, 400, ...
The multiples of 9: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 279, 288, 297, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 441, 450, 459, 468, 477, 486, 495, 504, 513, 522, 531, 540, 549, 558, 567, 576, 585, 594, 603, 612, 621, 630, 639, 648, 657, 666, 675, 684, 693, 702, 711, 720, 729, 738, 747, 756, 765, 774, 783, 792, 801, 810, 819, 828, 837, 846, 855, 864, 873, 882, 891, 900, ...
The [common] multiples of 3, 4 and 9: 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692, 1728, 1764, 1800, 1836, 1872, 1908, 1944, 1980, 2016, 2052, 2088, 2124, 2160, 2196, 2232, 2268, 2304, 2340, 2376, 2412, 2448, 2484, 2520, 2556, 2592, 2628, 2664, 2700, 2736, 2772, 2808, 2844, 2880, 2916, 2952, 2988, 3024, 3060, 3096, 3132, 3168, 3204, 3240, 3276, 3312, 3348, 3384, 3420, 3456, 3492, 3528, 3564, 3600, ...
Yes, all multiples of 9 are also multiples of 3.but they're not all of them. Every multiple of 9 is also a multiple of 3, but there are more multiples of 3 besides those.
Assuming you mean that you want the number of multiples of each, then for 1-100: number of multiples of 2 = 50 number of multiples of 3 = 33 number of multiples of 4 = 25 number of multiples of 6 = 16 number of multiples of 8 = 12 number of multiples of 9 = 11 Assuming you mean that you want the numbers that are multiples of 2, 3, 4, 6, 8 or 9, then some numbers may be multiples of more than one (for example 12 is a multiple of 2, 3, 4 and 6) and so a straight addition of the number of multiples of each cannot be done: Consider 2, 4 and 8 Every multiple of 4 or 8 is also a multiple of 2, so all the multiples of 4 and 8 are counted by the multiples of 2. Consider 3 and 9 Every multiple of 9 is also a multiple of 3, so all the multiples of 9 are counted by the multiple of 3 Consider 2, 3 and 6. Every multiple of 6 is an even multiple of 3, so are counted in both the multiples of 2 and 3. So the total number of multiples of 2, 3, 4, 6, 8 or 9 is the number of multiples of 2 plus the number of multiples of 3 minus the number of multiples of 6: For 1 to 100, Number of multiples of 2 = 50 Number of multiples of 3 = 33 Number of multiples of 6 = 16 So number of multiples of 2, 3, 4, 6, 8 or 9 in 1-100 is 50+33-16 = 67. Assuming you mean that they are multiples of all of 2, 3, 4, 6, 8 and 9, then they must be multiples of the lowest common multiple of 2, 3, 4, 6 ,8, 9 2 = 21, 3 = 31, 4 = 22, 6 = 2131, 8 = 23, 9 = 32 LCM = highest power of the primes used = 2332 = 72 Thus all numbers that are multiples of 2, 3, 4, 6, 8 and 9 are multiples of 72, which means between 1 and 100 only 1 number is a multiple of all of them, namely 72
Yes, but that doesn't cover all of them. Every multiple of 9 is also a multiple of 3, but there are more multiples of 3 besides those.
Well, it depends. Since 9 is a bigger number than 3, logic says that not all multiples of three are all also multiples of 9. However, 9 is a multiple of 3 (3x3=9), therefore if we count up the 3x table, every third number will also be a multiple of 9. Eg: 3,6,9,12,15,18. 6 numbers, two are multiples of 9, 9 and 18.
The Least Common Multiple (LCM) for 3 4 9 is 36.
Yes, all multiples of 9 are also multiples of 3.but they're not all of them. Every multiple of 9 is also a multiple of 3, but there are more multiples of 3 besides those.
Assuming you mean that you want the number of multiples of each, then for 1-100: number of multiples of 2 = 50 number of multiples of 3 = 33 number of multiples of 4 = 25 number of multiples of 6 = 16 number of multiples of 8 = 12 number of multiples of 9 = 11 Assuming you mean that you want the numbers that are multiples of 2, 3, 4, 6, 8 or 9, then some numbers may be multiples of more than one (for example 12 is a multiple of 2, 3, 4 and 6) and so a straight addition of the number of multiples of each cannot be done: Consider 2, 4 and 8 Every multiple of 4 or 8 is also a multiple of 2, so all the multiples of 4 and 8 are counted by the multiples of 2. Consider 3 and 9 Every multiple of 9 is also a multiple of 3, so all the multiples of 9 are counted by the multiple of 3 Consider 2, 3 and 6. Every multiple of 6 is an even multiple of 3, so are counted in both the multiples of 2 and 3. So the total number of multiples of 2, 3, 4, 6, 8 or 9 is the number of multiples of 2 plus the number of multiples of 3 minus the number of multiples of 6: For 1 to 100, Number of multiples of 2 = 50 Number of multiples of 3 = 33 Number of multiples of 6 = 16 So number of multiples of 2, 3, 4, 6, 8 or 9 in 1-100 is 50+33-16 = 67. Assuming you mean that they are multiples of all of 2, 3, 4, 6, 8 and 9, then they must be multiples of the lowest common multiple of 2, 3, 4, 6 ,8, 9 2 = 21, 3 = 31, 4 = 22, 6 = 2131, 8 = 23, 9 = 32 LCM = highest power of the primes used = 2332 = 72 Thus all numbers that are multiples of 2, 3, 4, 6, 8 and 9 are multiples of 72, which means between 1 and 100 only 1 number is a multiple of all of them, namely 72
There are an infinite number of multiples of any number. Therefore, it is impossible to list all the multiples of 3 and 4. A list of the first 10 multiples: Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 Multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40
yes since 9 is divisible by 3 all its multiples are as well
The first 3 multiples of 4 are: 4, 8, and 12.The first 3 multiples of 9 are: 9, 18, and 27.
The numbers 3,6 and 9 are all multiples of 3 because 3 can go into all of them evenly.
3 yes, 6 no.
1 2 3 4 5 6 7 8 9
They are all multiples of 3.
18 and all the multiples of 18.
This question is true
Yes, but that doesn't cover all of them. Every multiple of 9 is also a multiple of 3, but there are more multiples of 3 besides those.