f(x) = (x)^ (1/2) (i.e. the square root of x)
to find the domain first check all the possibilities of the denominator attaining a value of zero then if the function has any thing inside a square root, the expression inside the root must be always greater than or equal to zero.If the square root is in the denominator then the expression inside must be just greater than zero but not equal to zero.
Domain is the x-axis and range is the y-axisThe domain is all the x-values that a function that take on, and the range is all the y-values that it can be. For instance, if you were given a set of coordinates such as {(2,3), (4,1), and (-9,5)}, you domain would be (-9, 2, 3) for the x-values, and your range would be (1,3,5) for the y-values. If you have to find domain and range for a function, domain typically being found first, you must think of all the possible x-values that could satisfy that equation. If there is a square root, you must ensure that the values do not make that section of the equation negative, and in other cases you must make sure you do not divide by zero. You can then find the range by making a graph or a chart.Domain is/are the value(s) which go under a rule (function of x) and the range is/are the value(s) you get out.
It is the "square root." This is the opposite function (n1/2) of the square (n2).
x
The answer depends on the domain. If the domain is non-negative real numbers, then the range is the whole of the real numbers. If the domain is the whole of the real numbers (or the complex plane) , the range is the complex plane.
"Domain" means for what numbers the function is defined (the "input" to the function). For example, "x + 3" is defined for any value of "x", whereas "square root of x" is defined for non-negative "x". "Range" refers to the corresponding values calculated by the function - the "output" of the function. If you write a function as y = (some function of x), for example y = square root of x, then the domain is all possible values that "x" can have, whereas the range is all the possible values that "y" can have.
Domain is greater than or equal to zero. same with range
sqrt(x) Domain: {0,infinity) Range: {0,infinity) *note: the domain and range include the point zero.
There can be no possible answer because the point (4, 5) is not on a square root.
The square root operation is not a function because for each value of y there can be 2 values of x - the principal square root and its negative. This can only be rectified by limiting the range of the opearation to the principal or positive square root. Furthermore, it also depends on the domain of the function. If y<4 then the square root is not defined within Real numbers. So, for y ≥ 4, x = +sqrt(y-4) is a function.
The domain of a function, is the range of input values which will give you a real answer.For example the domain of x+1 would be all real numbers as any number plus 1 will be another real numberThe domain of x0.5 would be all positive numbers as the answer to square root of a negative number is not realNote:x0.5 means the square root of x* * * * *Not quite. A function is a one-to-one or many-to-one mapping from a set S to a set T (which need not be a different set). A function can be one whose domain is all the cars parked in a street and the range is the second character of their registration number.A mathematical function can have the complex field as its domain and range, so a real answer is not a necessary requirement for a function.
The domain of the function f (x) = square root of (x - 2) plus 4 is Domain [2, ∞)
The answer depends on what group or field the function is defined on. In the complex plane, the range is the complex plane. If the domain is all real numbers and the radical is an odd root (cube root, fifth root etc), the range is the real numbers. Otherwise, it is the complex plane. If the domain is non-negative real numbers, the range is also the real numbers.
Some functions are only defined for certain values of the argument. For example, the the logarithm is defined for positive values. The inverse function is defined for all non-zero numbers. Sometimes the range determines the domain. If you are restricted to the real numbers, then the domain of the square root function must be the non-negative real numbers. In this way, there are definitional domains and ranges. You can then chose any subset of the definitional domain to be your domain, and the images of all the values in the domain will be the range.
f(x) = (x)^ (1/2) (i.e. the square root of x)
{ x | x is greater than or equal to -9 . } is the domain of the real function defined by this formula.