The domain and the range depends on the context. For example, the domain and the range can be the whole of the complex field. Or I could define the domain as {-2, 1, 5} and then the range would be {0, 3, -21}. When either one of the range and domain is defined, the other is implied.
The domain of the function f (x) = square root of (x - 2) plus 4 is Domain [2, ∞)
In the complex field, the domain and range are both the whole of the complex field.If restricted to real numbers, the domain is x >= 4 and y can be all real numbers >= 0 or all real numbers <= 0 [or some zigzagging pattern of that set].
The square root operation is not a function because for each value of y there can be 2 values of x - the principal square root and its negative. This can only be rectified by limiting the range of the opearation to the principal or positive square root. Furthermore, it also depends on the domain of the function. If y<4 then the square root is not defined within Real numbers. So, for y ≥ 4, x = +sqrt(y-4) is a function.
The domain of a function, is the range of input values which will give you a real answer.For example the domain of x+1 would be all real numbers as any number plus 1 will be another real numberThe domain of x0.5 would be all positive numbers as the answer to square root of a negative number is not realNote:x0.5 means the square root of x* * * * *Not quite. A function is a one-to-one or many-to-one mapping from a set S to a set T (which need not be a different set). A function can be one whose domain is all the cars parked in a street and the range is the second character of their registration number.A mathematical function can have the complex field as its domain and range, so a real answer is not a necessary requirement for a function.
Domain is greater than or equal to zero. same with range
Domian is x>-6 Range is y> or equal to 0
what is the domain of g(x) equals square root of x plus 1? √(x+1) ≥ 0 x+1≥0 x≥-1 Domain: [-1,∞)
To an extent, the answer depends on what the range is. The domain can be the set of complex numbers, with the range also the complex numbers. The domain can be the whole of the real numbers if the range can be complex. If the range needs to be real, then the domain must be the real numbers excluding the interval (0,9). As the range is restricted (rational, integer), the domain will also shrink.
x
"Domain" means for what numbers the function is defined (the "input" to the function). For example, "x + 3" is defined for any value of "x", whereas "square root of x" is defined for non-negative "x". "Range" refers to the corresponding values calculated by the function - the "output" of the function. If you write a function as y = (some function of x), for example y = square root of x, then the domain is all possible values that "x" can have, whereas the range is all the possible values that "y" can have.
The domain and the range depends on the context. For example, the domain and the range can be the whole of the complex field. Or I could define the domain as {-2, 1, 5} and then the range would be {0, 3, -21}. When either one of the range and domain is defined, the other is implied.
Assuming you mean sqrt(x-3) rather than sqrt(x) - 3, the domain can be any subset of of x ≥ 3. The range will depend on the domain but needs to be divided in two so that it contains only one of the two roots.
f(x) = (x)^ (1/2) (i.e. the square root of x)
sqrt(x) Range: {0,infinity)
To find the domain or range, solve for a variable and see if the other variable has any restrictions on it. In this case, x2 + y = 4 y = 4 - x2 There are no restrictions on x, therefore x is in the domain of all real numbers. x = square root(4 - y) Since the argument (number in brackets) of a square root must be positive, 4 - y > 0, y < 4. Domain: x can be all real numbers. Range: y can be all real numbers less than or equal to 4.
The domain of the function f (x) = square root of (x - 2) plus 4 is Domain [2, ∞)