answersLogoWhite

0

When two dies are thrown, there are 36 possible outcomes. The first number represents the outcome of the first die and the second number represents the outcome of the second die.

(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)

(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)

(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)

(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)

(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)

(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

How many possible outcomes sum of dots are there if you throw the two dice on the board?

The sum can be any number from 2 to 12.That's 11 possible outcomes.


How many possible outcomes sum of dots are there if you throw the two dice?

There are eleven possible "sums of dots" if you throw two 6-sided dice. The range of possible values is from 2 (1+1) to 12 (6+6).


How many products possible with 2 dice?

There is 62 or 36 possible outcomes rolling two dice.


How many different outcomes will you get if you roll 2 dice?

There are 36 possible outcomes.


How many outcome are possible in 2 dice?

6 sides x 6 sides = 36 outcomes


How many outcome for 2 dice?

there are 36 outcomes when rolling 2 dice


With 2 dice what is the probability to throw a 7?

When rolling two six-sided dice, there are a total of 36 possible outcomes (6 faces on the first die multiplied by 6 faces on the second die). To roll a sum of 7, there are 6 favorable combinations: (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1). Therefore, the probability of rolling a 7 is 6 favorable outcomes out of 36 possible outcomes, which simplifies to 1/6 or approximately 16.67%.


How many outcomes are there in the sample space of rolling 2 dice?

11 outcomes if the dice are indistinguishable, 36 otherwise.


What is a possible set of outcomes?

The set of possible outcomes is the set of different ways in which an event might or might not happen. Take a very simple example: If you roll a dice you will roll a 6 or a 5 or a 4 or a 3 or a 2 or a 1. So there are 6 different possible outcomes, all of which are equally probable. If you roll 2 dice at the same time the possible total scores are are from 2 ( a 1 and a 1) to 12 (a 6 and a 6), so there are 11 possible outcomes, but not all equally probable.


How many times must you throw two dice to be sure that you get the same sum at least twice?

Since there are 11 different outcomes it is possible that the first eleven throws are all different. But the 12th time you throw must repeat one of the previous results.


What is the probably of rolling two dice and getting the sum of 2?

1/36.Explanation: There will be 36 possible outcomes when you roll two dice.Let us suppose the first number is the outcome of 1 dice and the second number is the outcome of the second dice. Then we have 36 possible outcomes like : (1,1) , (1,2), (1,3), (1,4), (1,5), (1,6) and so on until (6,6). Note that 6 is the highest possible outcome on any dice.When you add the outcomes of both dice you are supposed to get two. In such a case only one outcome is possible of all the 36 outcomes and that is (1,1).Now, by definition, Probability is (No. of favorable outcomes/Total number of outcomes) = 1/36 in this case.


What is the sample space for all the outcomes possible from rolling 6 dice?

1, 2, 3, 4, 5, 6