z: alternate interior angles
c: consecutive interior angles
f: corresponding angles
x: vertically opposite angles
Chat with our AI personalities
ex+f = c -dx ex+dx = c -f x(e+d) = c -f x = c -f/(e+d)
While no set of rules can handle differentiating every expression, the following should help. For all of the following, assume c and n are constants, f(x) and g(x) are functions of x, and f'(x) and g'(x) mean the derivative of f and g respectively. Constant derivative rule:d/dx(c)=0 Constant multiple rule:d/dx(c*f(x))=c*f'(x) Sum and Difference Rule:d/dx(f(x)±g(x))=f'(x)±g'(x) Power rule:d/dx(xn)=n*xn-1 Product rule:d/dx(f(x)*g(x))=f'(x)*g(x) + g'(x)*f(x) Quotient rule:d/dx(f(x)/g(x))=(f'(x)*g(x)-g'(x)*f(x))/f(x)² Chain rule:d/dx(f(g(x))= f'(g(x))*g'(x)
∫ f'(x)/[f(x)√(f(x)2 - a2)] dx = (1/a)arcses(f(x)/a) + C C is the constant of integration.
f(x) = 2 * 2 - x + 9 f(-4) = 2 * 2 -(-4) + 9 f(-4) = 4 + 4 + 9 = 17
Simply integrate all the pieces apart, en add them up. This is allowed, because int_a^c f(x)dx = int_a^b f(x)dx + int_b^c f(x)dx for all a,b,c in dom(f).