answersLogoWhite

0

Using calculus to see if the function f(x) is continuous at a point (point c) involves three steps. These three conditions must be met:

1. f(c) exists, is defined

2. lim f(x) exists

x-->c

3. f(c)= lim f(x)

x-->c

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: How can you find the point at which the function is continuous?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Where is f(x) discontinuous but not differentiable Explain?

Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.


Every continuous function is integrible but converse is not true every integrable function is not continuous?

That's true. If a function is continuous, it's (Riemman) integrable, but the converse is not true.


What kind of continuous function can change sign but is never zero?

If the function is continuous in the interval [a,b] where f(a)*f(b) < 0 (f(x) changes sign ) , then there must be a point c in the interval a<c<b such that f(c) = 0 . In other words , continuous function f in the interval [a,b] receives all all values between f(a) and f(b)


What is function which is has irremovable discontinuity at x-2 removable discontinuity at x2 and continuous at other points?

"Removable discontinuity" means the function is not defined at that point (it has a "hole"), but by changing the function definition at that single point, defining it to be certain value, it becomes continuous. "Irremovable discontinuity" means the function makes a sudden jump at that point. There are infinitely many functions like that; for example, you can set the function to be: f(x) is undefined at x = -2 f(x) = 0 for x < 2 (except for x = -2) f(x) = 1 for x > 2


How do I show that a given function f is continuous everywhere?

Υou show that it is continuous in every element of it's domain.