Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.
That's true. If a function is continuous, it's (Riemman) integrable, but the converse is not true.
If the function is continuous in the interval [a,b] where f(a)*f(b) < 0 (f(x) changes sign ) , then there must be a point c in the interval a<c<b such that f(c) = 0 . In other words , continuous function f in the interval [a,b] receives all all values between f(a) and f(b)
"Removable discontinuity" means the function is not defined at that point (it has a "hole"), but by changing the function definition at that single point, defining it to be certain value, it becomes continuous. "Irremovable discontinuity" means the function makes a sudden jump at that point. There are infinitely many functions like that; for example, you can set the function to be: f(x) is undefined at x = -2 f(x) = 0 for x < 2 (except for x = -2) f(x) = 1 for x > 2
Υou show that it is continuous in every element of it's domain.
All differentiable functions need be continuous at least.
If the graph of the function is a continuous line then the function is differentiable. Also if the graph suddenly make a deviation at any point then the function is not differentiable at that point . The slope of a tangent at any point of the graph gives the derivative of the function at that point.
Yes. The cosine function is continuous. The sine function is also continuous. The tangent function, however, is not continuous.
Yes.If you find 2 relative minima and the function is continuous, there must be exactly one point between these minima with the highest value in that interval. This point is a relative maxima.Think of temperature for example (it is continuous).
yes it is a continuous function.
Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.
Four discrete points do not define a continuous function.
Yes, a polynomial function is always continuous
That's true. If a function is continuous, it's (Riemman) integrable, but the converse is not true.
A piece-wise continuous function is one which has a domain that is broken up inot sub-domains. Over each sub-domain the function is continuous but at the end of the domain one of the following possibilities can occur:the domain itself is discontinuous (disjoint domains),the value of the function is not defined at the start or end-point of the domain ((a hole),the value of the function at the end point of a sub-domain is different to its value at the start of the next sub-domain (a step-discontinuity).A piece-wise continuous function is one which has a domain that is broken up inot sub-domains. Over each sub-domain the function is continuous but at the end of the domain one of the following possibilities can occur:the domain itself is discontinuous (disjoint domains),the value of the function is not defined at the start or end-point of the domain ((a hole),the value of the function at the end point of a sub-domain is different to its value at the start of the next sub-domain (a step-discontinuity).A piece-wise continuous function is one which has a domain that is broken up inot sub-domains. Over each sub-domain the function is continuous but at the end of the domain one of the following possibilities can occur:the domain itself is discontinuous (disjoint domains),the value of the function is not defined at the start or end-point of the domain ((a hole),the value of the function at the end point of a sub-domain is different to its value at the start of the next sub-domain (a step-discontinuity).A piece-wise continuous function is one which has a domain that is broken up inot sub-domains. Over each sub-domain the function is continuous but at the end of the domain one of the following possibilities can occur:the domain itself is discontinuous (disjoint domains),the value of the function is not defined at the start or end-point of the domain ((a hole),the value of the function at the end point of a sub-domain is different to its value at the start of the next sub-domain (a step-discontinuity).
Weistrass function is continuous everywhere but not differentiable everywhere
Yes, that happens with any continuous function. The limit is equal to the function value in this case.Yes, that happens with any continuous function. The limit is equal to the function value in this case.Yes, that happens with any continuous function. The limit is equal to the function value in this case.Yes, that happens with any continuous function. The limit is equal to the function value in this case.