If the discriminant = 0 then the graph touches the x axis at one point If the discriminant > 0 then the graph touches the x axis at two ponits If the discriminant < 0 then the graph does not meet the x axis
Discriminant = 116; Graph crosses the x-axis two times
With the standard notation, If b2 < 4ac then the discriminant is negative If b2 = 4ac then the discriminant is zero If b2 > 4ac then the discriminant is positive
In this case, the discriminant is less than zero and the graph of this parabola lies above the x-axis. It never crosses.
The discriminant is the expression under the square root of the quadratic formula.For a quadratic equation: f(x) = ax2 + bx + c = 0, can be solved by the quadratic formula:x = (-b +- sqrt(b2 - 4ac)) / (2a).So if you graph y = f(x) = ax2 + bx + c, then the values of x that solve [ f(x)=0 ] will yield y = 0. The discriminant (b2 - 4ac) will tell you something about the graph.(b2 - 4ac) > 0 : The square root will be a real number and the root of the equation will be two distinct real numbers, so the graph will cross the x-axis at two different points.(b2 - 4ac) = 0 : The square root will be zero and the roots of the equation will be a real number double root, so the graph will touch the x-axis at only one points.(b2 - 4ac) < 0 : The square root will be imaginary, and the roots of the equation will be two complex numbers, so the graph will not touch the x-axis.So by looking at the graph, you can tell if the discriminant is positive, negative, or zero.
If the discriminant = 0 then the graph touches the x axis at one point If the discriminant > 0 then the graph touches the x axis at two ponits If the discriminant < 0 then the graph does not meet the x axis
If the discriminant is negative, the equation has no real solution - in the graph, the parabola won't cross the x-axis.
A graph of an equation in the form y = ax^2 + bx + c will cross the y-axis once - whatever its discriminant may be.
Discriminant = 116; Graph crosses the x-axis two times
With the standard notation, If b2 < 4ac then the discriminant is negative If b2 = 4ac then the discriminant is zero If b2 > 4ac then the discriminant is positive
The graph will cross the y-axis once but will not cross or touch the x-axis.
It has a complete lack of any x-intercepts.
The discriminant tells you how many solutions there are to an equation The discriminant is b2-4ac For example, two solutions for a equation would mean the discriminant is positive. If it had 1 solution would mean the discriminant is zero If it had no solutions would mean that the discriminant is negative
In this case, the discriminant is less than zero and the graph of this parabola lies above the x-axis. It never crosses.
The discriminant is the expression under the square root of the quadratic formula.For a quadratic equation: f(x) = ax2 + bx + c = 0, can be solved by the quadratic formula:x = (-b +- sqrt(b2 - 4ac)) / (2a).So if you graph y = f(x) = ax2 + bx + c, then the values of x that solve [ f(x)=0 ] will yield y = 0. The discriminant (b2 - 4ac) will tell you something about the graph.(b2 - 4ac) > 0 : The square root will be a real number and the root of the equation will be two distinct real numbers, so the graph will cross the x-axis at two different points.(b2 - 4ac) = 0 : The square root will be zero and the roots of the equation will be a real number double root, so the graph will touch the x-axis at only one points.(b2 - 4ac) < 0 : The square root will be imaginary, and the roots of the equation will be two complex numbers, so the graph will not touch the x-axis.So by looking at the graph, you can tell if the discriminant is positive, negative, or zero.
It can tell you three things about the quadratic equation:- 1. That the equation has 2 equal roots when the discriminant is equal to zero. 2. That the equation has 2 distinctive roots when the discriminant is greater than zero. £. That the equation has no real roots when the discriminant is less than zero.
Once.