answersLogoWhite

0

What is -n 2?

Updated: 4/28/2022
User Avatar

Wiki User

7y ago

Best Answer

It is an expression that can be simplified to: 3n-10

User Avatar

Karl Runte

Lvl 10
3y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is -n 2?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Evaluate the expression f left parenthesis n plus 2 right parenthesis minus f left parenthesis n right paren given that f left paren n right paren equals 1 over 2 n left paren n plus 2 right paren?

A very good try, but f(n) is still ambiguous. I assume you mean f(n) = 1/2*n*(n+2) and not 1/[2*n*(n+2)] Then f(n+2) - f(n) = 1/2*(n+2)*(n+2+2) - 1/2*n*(n+2) = 1/2*(n+2)*(n+4) - 1/2*n*(n+2) = 1/2*(n+2)*{(n + 4) - n} = 1/2*(n+2)*4 = 2*(n+2)


What is n divided by 2?

It is n/2.


What is the 34th number in this sequence 2 6 12 20?

The 34th number is 1190. First number is 2 = 2n where n = 1 Second number is 4 + 2 = 2n + 2(n-1) where n = 2 Third number is 6 + 4 + 2 = 2n + 2(n-1) + 2(n -2) where n = 3 Fourth number is 8 + 6 + 4 + 2 = 2n + 2(n-1) + 2(n-2) + 2(n-3) where n = 4 . . . In general the nth number is 2n + 2(n-1) + 2(n-2) + 2(n-3) + ..... + 2(n-n+1) and In general the nth number is 2n + 2(n-1) + 2(n-2) + 2(n-3) + ..... + 2(1) Take 2 as a common factor and we get nth number = 2(n + n -1 + n -2 + n -3 + ..... + 1) which is = 2(1 + 2 + 3 + ..... + n-3 + n-2 + n-1 + n) = 2(sum of n numbers starting with 1) But sum of n numbers starting with 1 is (n)(n+1)/2 Hence nth number in general is (2)(n)(n+1)/2 = n(n+1) Hence 34th number would be 34(34+1) = 34x35 = 1190


What is the pattern 2 4 16 3 9 81 4 16 256 5 25 625?

n, n^2, n^2^2, n+1, (n+1)^2, (n+1)^2^2, n+2, ...


Prove that 2 power n lessthan equal to n factorial lessthan equal to n power n?

Assume 2^k < k! for all n > k here n > 2, then 2^n = 2^(n - 1)*2 < (n-1)! * n = n! Done. Connie and John


What is the Answer to octagonal number sequence?

It is U(n) = 2*(n^2 + 3n + 2) = 2*(n + 1)*(n + 2)


How do you solve n 2 n n n?

2 N cubed (3)


Can you tell how to submit an attempted proof of Fermat's Last Theorem?

PIERRE DE FERMAT' S LAST THEOREM. CASE SPECIAL N=3 AND.GENERAL CASE N>2. . THE CONDITIONS.Z,X,Y,N ARE THE INTEGERS . Z*X*Y*N>0.N>2. Z^3=/=X^3+Y^3 AND Z^N=/=X^N+Y^N. SPECIAL CASE N=3. WE HAVE (X^2+Y^2)^2=X^4+Y^4+2X^2*Y^2. BECAUSE X*Y>0=>2X^2*Y^2>0. SO (X^2+Y^2)^2=/=X^4+Y^4. CASE 1. IF Z^2=X^2+Y^2 SO (Z^2)^2=(X^2+Y^2)^2 BECAUSE (X^+Y^2)^2=/=X^4+Y^4. SO (Z^2)^2=/=X^4+Y^4. SO Z^4=/=X^4+Y^4. CASE 2. IF Z^4=X^4+Y^4 BECAUSE X^4+Y^4.=/= (X^2+Y^2.)^2 SO Z^4=/=(X^2+Y^2.)^2 SO (Z^2)^2=/=(X^2+Y^2.)^2 SO Z^2=/=X^2+Y^2. (1) AND (2)=> Z^4+Z^2=/=X^4+Y^4+X^2+Y^2. SO 2Z^4+2Z^2=/=2X^4+2Y^4+2X^2+Y^2. SO (Z^4+Z^2+2Z^3+Z^4+Z^2-2Z^3)=/=(X^4+X^2+2X^3+X^4+X^2-2X^3)+)(Y^4+Y^2+2Y^3+Y^4+Y^2-2Y^3) SO IF (Z^4+Z^2+2Z^3)/4=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 => (Z^4+Z^2-2Z^3)/4=/=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3/4) AND SO IF (Z^4+Z^2-2Z^3)/4=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3)./4 => (Z^4+Z^2+2Z^3)/4=/=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 BECAUSE (Z^4+Z^2+2Z^3)/4 - (Z^4+Z^2-2Z^3)/4 =Z^3. SO Z^3=/=X^3+Y^3. GENERAL CASE N>2. Z^N=/=X^N+Y^N. WE HAVE [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=X^(N+1)/2+Y^(N+1)/2+ H. BECAUSE X*Y>0=>H>0. SO [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=/= X^(N+1)/2+Y^(N+1)/2 CASE 1. IF Z^(N-1)/2=X^(N-1)/2+Y^(N-1)/2 SO [Z^(N-1)/2]^(N+1)/(N-1)=[X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1). BECAUSE [X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO [Z^(N-1)/2]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO Z^(N+1)/2=/=X^(N+1)/2+Y^(N+1)/2. CASE 2. IF Z^(N+1)/2=X^(N+1)/2+Y^(N+1)/2 SO [Z^(N+1)/2]^(N-1)/(N+1)=[X^(N+1)/2+Y^(N+1)/2 ]^(N-1)/(N+1) BECAUSE [X^(N+1)/2+Y^(N+1)/2](N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO [Z^(N+1)/2]^(N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO Z^(N-1)/2=/=X(N-1)/2+Y^(N-1)/2.. SO (1) AND (2)=> Z^(N+1)/2+Z^(N-1)/2=/=X^(N+1)/2+Y^(N+1)/2+X^(N-1)/2+Y^(N-1)/2. SO 2[Z^(N+1)/2+Z^(N-1)/2]=/=2[X^(N+1)/2+Y^(N+1)/2]+2[X^(N-1)/2+Y^(N-1)/2.] SO [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]+[Z^(N+1)/2+Z^(N-1)/2-2Z^N ]=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]+[X^(N+1)/2+X^(N-1)/2-2X^N ]+[Y^(N+1)/2+Y^(N-1)/2+2Y^N ]+[Y^(N+1)/2+Y^(N-1)/2-2Y^N ] SO IF [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2+2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4=> [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 AND IF [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 => [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]/4 + [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4 BECAUSE [Z^(N+1)/2+Z^(N-1)/2+2Z^N ] /4- [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=Z^N. SO Z^N=/=X^N+Y^N HAPPY&PEACE. Trantancuong.


What is the newest Proof about Fermat's last theorem?

PIERRE DE FERMAT' S LAST THEOREM. CASE SPECIAL N=3 AND.GENERAL CASE N>2. . THE CONDITIONS.Z,X,Y,N ARE THE INTEGERS . Z*X*Y*N>0.N>2. Z^3=/=X^3+Y^3 AND Z^N=/=X^N+Y^N. SPECIAL CASE N=3. WE HAVE (X^2+Y^2)^2=X^4+Y^4+2X^2*Y^2. BECAUSE X*Y>0=>2X^2*Y^2>0. SO (X^2+Y^2)^2=/=X^4+Y^4. CASE 1. IF Z^2=X^2+Y^2 SO (Z^2)^2=(X^2+Y^2)^2 BECAUSE (X^+Y^2)^2=/=X^4+Y^4. SO (Z^2)^2=/=X^4+Y^4. SO Z^4=/=X^4+Y^4. CASE 2. IF Z^4=X^4+Y^4 BECAUSE X^4+Y^4.=/= (X^2+Y^2.)^2 SO Z^4=/=(X^2+Y^2.)^2 SO (Z^2)^2=/=(X^2+Y^2.)^2 SO Z^2=/=X^2+Y^2. (1) AND (2)=> Z^4+Z^2=/=X^4+Y^4+X^2+Y^2. SO 2Z^4+2Z^2=/=2X^4+2Y^4+2X^2+Y^2. SO (Z^4+Z^2+2Z^3+Z^4+Z^2-2Z^3)=/=(X^4+X^2+2X^3+X^4+X^2-2X^3)+)(Y^4+Y^2+2Y^3+Y^4+Y^2-2Y^3) SO IF (Z^4+Z^2+2Z^3)/4=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 => (Z^4+Z^2-2Z^3)/4=/=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3/4) AND SO IF (Z^4+Z^2-2Z^3)/4=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3)./4 => (Z^4+Z^2+2Z^3)/4=/=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 BECAUSE (Z^4+Z^2+2Z^3)/4 - (Z^4+Z^2-2Z^3)/4 =Z^3. SO Z^3=/=X^3+Y^3. GENERAL CASE N>2. Z^N=/=X^N+Y^N. WE HAVE [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=X^(N+1)/2+Y^(N+1)/2+ H. BECAUSE X*Y>0=>H>0. SO [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=/= X^(N+1)/2+Y^(N+1)/2 CASE 1. IF Z^(N-1)/2=X^(N-1)/2+Y^(N-1)/2 SO [Z^(N-1)/2]^(N+1)/(N-1)=[X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1). BECAUSE [X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO [Z^(N-1)/2]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO Z^(N+1)/2=/=X^(N+1)/2+Y^(N+1)/2. CASE 2. IF Z^(N+1)/2=X^(N+1)/2+Y^(N+1)/2 SO [Z^(N+1)/2]^(N-1)/(N+1)=[X^(N+1)/2+Y^(N+1)/2 ]^(N-1)/(N+1) BECAUSE [X^(N+1)/2+Y^(N+1)/2](N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO [Z^(N+1)/2]^(N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO Z^(N-1)/2=/=X(N-1)/2+Y^(N-1)/2.. SO (1) AND (2)=> Z^(N+1)/2+Z^(N-1)/2=/=X^(N+1)/2+Y^(N+1)/2+X^(N-1)/2+Y^(N-1)/2. SO 2[Z^(N+1)/2+Z^(N-1)/2]=/=2[X^(N+1)/2+Y^(N+1)/2]+2[X^(N-1)/2+Y^(N-1)/2.] SO [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]+[Z^(N+1)/2+Z^(N-1)/2-2Z^N ]=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]+[X^(N+1)/2+X^(N-1)/2-2X^N ]+[Y^(N+1)/2+Y^(N-1)/2+2Y^N ]+[Y^(N+1)/2+Y^(N-1)/2-2Y^N ] SO IF [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2+2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4=> [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 AND IF [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 => [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]/4 + [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4 BECAUSE [Z^(N+1)/2+Z^(N-1)/2+2Z^N ] /4- [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=Z^N. SO Z^N=/=X^N+Y^N HAPPY&PEACE. Trantancuong.


N plus 2 over n equals 110 solve for n?

(n+2)/n = 110Multiply each side by 'n':n + 2 = 110nSubtract n from each side:2 = 109nDivide each side by 109:n = 2/109


If n divided by 2 is 60 what is n?

n/2 = 60 Therefore, n = 60 x 2 n = 120


In maths what are the three consecutive even numbers that have a sum of forty two?

The numbers are 12, 14 and 16. Let the numbers by n - 2, n and n + 2, then (n - 2) + n + (n + 2) = 3n = 42 : n = 14 so n - 2 = 12 and n + 2 = 16.