cos 60
[sin(x)^3 + cos(x)^3] / [sin(x) + cos(x)]= [(sin(x) + cos(x))(sin(x)^2 - sin(x)cos(x) + cos(x)^2)] / [sin(x) + cos(x)]***Now you can cancel a "sin(x) + cos(x)" from the top and bottom of the fraction. This makes the bottom of the fraction equal to 1. I am just going to write the next step without a 1 on the bottom of the fraction (x/1=x).So now you just have:= (sin(x)^2 - sin(x)cos(x) + cos(x)^2) *I'm going to move some terms around now. ~Not doing any computation in this step.= (sin(x)^2 + cos(x)^2 - sin(x)cos(x)) *Now we know that cos(x)^2 + sin(x)^2 = 1.= 1 - sin(x)cos(x)
cos(60) = 0.57 x 60 x cos(60) = 7 x 30 = 210
30%= 0.30 in decimal= 30/100 or 3/10 in fraction
30% = 3/10
510 ~ (510-360) ~ 150 Cos 510 = Cos 150 = - Cos 30 = - ( radical 3 ) / 2
cos(30 = 0.8660254038
cos(30)cos(55)+sin(30)sin(55)=cos(30-55) = cos(-25)=cos(25) Note: cos(a)=cos(-a) for any angle 'a'. cos(a)cos(b)+sin(a)sin(b)=cos(a-b) for any 'a' and 'b'.
Cos(30) = sqrt(3)/2
0.866
sin(30) = sin(90 - 60) = sin(90)*cos(60) - cos(90)*sin(60) = 1*cos(60) - 0*sin(60) = cos(60).
use product-to-sumformula sin u cos v =1/2 [sin(u+v)+ sin(u-v)]so you get1/2 int: (sin 15x) - (sin5x) dxsplit it1/2 int: sin 15x dx- 1/2 int: sin 5x dxusing substitution you can conclude that1/30 int: sin u du- 1/10 in sin w dw(you get the fraction change when you set dx=duand dw)so then- (cos u)/30 + (cos w)/10replace the substitution(cos 5x)/10 - (cos 15x)/30 + Constant
Cos of 850 degrees?850 deg = 130 + 360*2 = 130 degBy the graph of the cosine: cos(130) = -cos(50)and cos(50) is not a fraction of a root.cos(50) = 0.6427876...Therefore, cos(850) = -0.6427876...
cos 60
Root 3 over 2.
[sin(x)^3 + cos(x)^3] / [sin(x) + cos(x)]= [(sin(x) + cos(x))(sin(x)^2 - sin(x)cos(x) + cos(x)^2)] / [sin(x) + cos(x)]***Now you can cancel a "sin(x) + cos(x)" from the top and bottom of the fraction. This makes the bottom of the fraction equal to 1. I am just going to write the next step without a 1 on the bottom of the fraction (x/1=x).So now you just have:= (sin(x)^2 - sin(x)cos(x) + cos(x)^2) *I'm going to move some terms around now. ~Not doing any computation in this step.= (sin(x)^2 + cos(x)^2 - sin(x)cos(x)) *Now we know that cos(x)^2 + sin(x)^2 = 1.= 1 - sin(x)cos(x)
30% turned into fraction = 30/100 or 3/10 30% = 30%/100% = 30/100 or 3/10 in fraction