This is the real question what is the 19th term in the arithmetic sequence 11,7,3,-1,...? _________________________________________________________ Looks like you just subtract 4 each time, as : 11,7,3,-1,-5,-9, ......
In this case, 22 would have the value of 11.
Any pair of numbers will always form an arithmetic sequence.
10n + 1
an = an-1 + d term ar-1 = 11 difference d = -11 ar = ar-1 + d = 11 - 11 = 0 The term 0 follows the term 11.
The given sequence is an arithmetic sequence with a common difference of 7 (18-11=7, 25-18=7, and so on). To find the nth term of an arithmetic sequence, you can use the formula: a_n = a_1 + (n-1)d, where a_n is the nth term, a_1 is the first term, n is the position of the term, and d is the common difference. In this case, the first term a_1 is 11 and the common difference d is 7. So, the nth term of this sequence is 11 + (n-1)7, which simplifies to 11 + 7n - 7, or 7n + 4.
In this case, 22 would have the value of 11.
It is an Arithmetic Progression with a constant difference of 11 and first term 15.
No, it is geometric, since each term is 1.025 times the previous. An example of an arithmetic sequence would be 10, 10.25, 10.50, 10.75, 11.
Any pair of numbers will always form an arithmetic sequence.
I believe the answer is: 11 + 6(n-1) Since the sequence increases by 6 each term we can find the value of the nth term by multiplying n-1 times 6. Then we add 11 since it is the starting point of the sequence. The formula for an arithmetic sequence: a_{n}=a_{1}+(n-1)d
10n + 1
an = an-1 + d term ar-1 = 11 difference d = -11 ar = ar-1 + d = 11 - 11 = 0 The term 0 follows the term 11.
The given sequence is an arithmetic sequence with a common difference of 7 (18-11=7, 25-18=7, and so on). To find the nth term of an arithmetic sequence, you can use the formula: a_n = a_1 + (n-1)d, where a_n is the nth term, a_1 is the first term, n is the position of the term, and d is the common difference. In this case, the first term a_1 is 11 and the common difference d is 7. So, the nth term of this sequence is 11 + (n-1)7, which simplifies to 11 + 7n - 7, or 7n + 4.
-1 deduct 3 each time
The nth term for that arithmetic progression is 4n-1. Therefore the next term (the fifth) in the sequence would be (4x5)-1 = 19.
-161.
yes it is