The nth term of the sequence is (n + 1)2 + 2.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.
The nth term of the sequence is (n + 1)2 + 2.
Well, it would depend what the sequence was...? If the sequence was 2,4,6,8,10,12,14,16,18,20, then the 9th term would be 18!
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
58
The next term is 45 because the numbers are increasing by increments of 3 5 7 9 and then 11
It is: 26-8n