According to Wittgenstein's Finite Rule Paradox every finite sequence of numbers can be a described in infinitely many ways and so can be continued any of these ways - some simple, some complicated but all equally valid.
The Nth term, according to the simplest rule (a quadratic), is T(n) = n^2 - 2
Chat with our AI personalities
The nth term is 9n-2
Well, darling, the pattern here is increasing by odd numbers starting from 1. So, the nth term for this sequence would be n^2 - 2, where n represents the position of the term in the sequence. But hey, if math isn't your thing, just keep enjoying the ride with those quirky numbers!
Willies
The nth term = 9n-2
The given sequence appears to be increasing by 10 each time. To find the nth term, we can use the formula for arithmetic sequences: nth term = first term + (n-1) * common difference. In this case, the first term is 4 and the common difference is 10. Therefore, the nth term for this sequence would be 4 + (n-1) * 10, which simplifies to 10n - 6.