The sequence in the question is NOT an arithmetic sequence. In an arithmetic sequence the difference between each term and its predecessor (the term immediately before) is a constant - including the sign. It is not enough for the difference between two successive terms (in any order) to remain constant. In the above sequence, the difference is -7 for the first two intervals and then changes to +7.
12, 6, 0, -6, ...
It appears to be -6
8 + 4n
The sequence 216 12 23 is neither arithmetic nor geometric.
To find the value of the nth term in an arithmetic sequence, you can use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference between terms. In this sequence, the first term (a_1 = 12) and the common difference (d = -6 - 0 = -6). So, the formula becomes (a_n = 12 + (n-1)(-6)). Simplifying this gives (a_n = 12 - 6n + 6). Therefore, the value of the nth term in this arithmetic sequence is (a_n = 18 - 6n).
12, 6, 0, -6, ...
It appears to be -6
8 + 4n
The sequence 216 12 23 is neither arithmetic nor geometric.
To find the value of the nth term in an arithmetic sequence, you can use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference between terms. In this sequence, the first term (a_1 = 12) and the common difference (d = -6 - 0 = -6). So, the formula becomes (a_n = 12 + (n-1)(-6)). Simplifying this gives (a_n = 12 - 6n + 6). Therefore, the value of the nth term in this arithmetic sequence is (a_n = 18 - 6n).
It is neither.
Give the simple formula for the nth term of the following arithmetic sequence. Your answer will be of the form an + b.12, 16, 20, 24, 28, ...
It is -148.
7
This is not a geometric series since -18/54 is not the same as -36/12
No, geometric, common ratio 2
No it is not.U(2) - U(1) = 6 - 2 = 4U(3) - U(2) = 18 - 6 = 12Since 4 is different from 12, it is not an arithmetic sequence.