d/dx (2cos(x)sin⁻¹(x))
right, 2cos(x)sin⁻¹(x) is a product, so we'll differentiate using the product rule:
d/dx(uv) = u d/dx(v) + v d/dx(u)
u = 2cos(x)
v = sin⁻¹(x)
d/dx(u) = -2sin(x)
to find d/dx(sin⁻¹(x)) we'll set
y=sin⁻¹(x)
x=sin(y)
dx/dy = cos(y)
dy/dx = 1/(cos(y)) cos²(y) + sin²(y)=1,
dy/dx = 1/sqrt(1-sin²y) = 1/sqrt(1-x²) [x=sin(y)]
so plugging all this into our product rule,
d/dx (2cos(x)sin⁻¹(x))
= 2cos(x)/sqrt(1-x²) - 2sin(x)sin⁻¹(x).
Chat with our AI personalities
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
d/dx(-cosx)=--sinx=sinx
derivative (7cosx) = -ln(7) 7cosx sinx dx
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
(cosx)^2-(sinx)^2