d/dx (2cos(x)sin⁻¹(x))
right, 2cos(x)sin⁻¹(x) is a product, so we'll differentiate using the product rule:
d/dx(uv) = u d/dx(v) + v d/dx(u)
u = 2cos(x)
v = sin⁻¹(x)
d/dx(u) = -2sin(x)
to find d/dx(sin⁻¹(x)) we'll set
y=sin⁻¹(x)
x=sin(y)
dx/dy = cos(y)
dy/dx = 1/(cos(y)) cos²(y) + sin²(y)=1,
dy/dx = 1/sqrt(1-sin²y) = 1/sqrt(1-x²) [x=sin(y)]
so plugging all this into our product rule,
d/dx (2cos(x)sin⁻¹(x))
= 2cos(x)/sqrt(1-x²) - 2sin(x)sin⁻¹(x).
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
d/dx(-cosx)=--sinx=sinx
derivative (7cosx) = -ln(7) 7cosx sinx dx
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
(cosx)^2-(sinx)^2
take out the constant -2 then take the intergral of cosx this will give you sinx your answer is -2sinx
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
-sinx
Trig functions have their own special derivatives that you will have to memorize. For instance: the derivative of sinx is cosx. The derivative of cosx is -sinx The derivative of tanx is sec2x The derivative of cscx is -cscxcotx The derivative of secx is secxtanx The derivative of cotx is -csc2x
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
-cos(x)
2
d/dx(-cosx)=--sinx=sinx
given the identity sin(x+y)=sinx cosy + siny cosxsin2x = 2 sinx cosx andsin(2(x)+x) = sin 2x cos x + sinx cos 2xusing the last two identities givessin3x= 2 sinx cosx cosx + sinx cos2xfactoring the sinx we havesin3x = sinx(2cosx cosx+cos2x)which satisfies the requirement.However, we can simplify further since cos 2x = cosx cosx - sinx sinx (a well known identity)sin3x = sinx (2cosx cosx +cosx cosx - sinx sinx)so sin3x= sinx(3cosx cosx - sinx sinx)or sin 3x = 3.cos²x.sinx - sin³x* * * * *Good, but not good enough. The answer was required in terms of sin, not a mixture of sinx and cosx. Easily recitified, though, since cos²x = 1 - sin²xTherefore sin3x = 3*(1-sin²x)*sinx - sin³x= 3sinx - 3sin³x - sin³x= 3sinx - 4sin³x
derivative (7cosx) = -ln(7) 7cosx sinx dx
The derivative of sin(x) is cos(x).
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)