The derivative with respect to 'x' of sin(pi x) ispi cos(pi x)
To find the derivatve of the square root of cos x: Use the chain rule; this means multiply the inner derivative by the outer derivative. You can write the question f(x) = (cos x)1/2 This general break-down explains how to find d/dx f(x) note: d/dx basically symbolizes "the derivative of" In general terms: f(x) = x1/2 g(x) = cos x f(g(x)) = (cos x)1/2 outer derivative: d/dx f(z) = (1/2)*x-1/2 = 1/(4cos x)1/2 inner derivative: d/dx g(x) = -sin(x) final answer: d/dx f(g(x)) = -sin(x)/(4*cos x)1/2 note: d/dx means "the derivative of"; so d/dx x = 1 Further explained: Set up the equation to a more general form: (cos x)1/2 To make the inner derivative, look at cos(x) To make the outer derivative, look at x1/2 note: x ~ cos x; so we treat (cos x) simply as x, to create the outer derivative You probably know the necessary derivates: 1. derivative of cos x = -sin x 2. derivative of a1/2 = (1/2)*a-1/2 = 1/(4a)1/2 Multiplying the two we get the answer: -sin(x)/(4cos x)1/2
That means you must take the derivative of the derivative. In this case, you must use the product rule. y = 6x sin x y'= 6[x (sin x)' + (x)' sin x] = 6[x cos x + sin x] y'' = 6[x (cos x)' + (x)' cos x + cos x] = 6[x (-sin x) + cos x + cos x] = 6[-x sin x + 2 cos x]
-ln|cos x| + C
d/dx [sin(x) + 2] = cos(x)
The derivative of cos(x) is negative sin(x). Also, the derivative of sin(x) is cos(x).
The derivative with respect to 'x' of sin(pi x) ispi cos(pi x)
The derivative of the natural log is 1/x, therefore the derivative is 1/cos(x). However, since the value of cos(x) is submitted within the natural log we must use the chain rule. Then, we multiply 1/cos(x) by the derivative of cos(x). We get the answer: -sin(x)/cos(x) which can be simplified into -tan(x).
(cos x sin x) / (cos x sin x) = 1. The derivative of a constant, such as 1, is zero.
The derivative of cos(x) equals -sin(x); therefore, the anti-derivative of -sin(x) equals cos(x).
The derivative of sin (x) is cos (x). It does not work the other way around, though. The derivative of cos (x) is -sin (x).
Write sec x as a function of sines and cosines (in this case, sec x = 1 / cos x). Then use the division formula to take the first derivative. Take the derivative of the first derivative to get the second derivative. Reminder: the derivative of sin x is cos x; the derivative of cos x is - sin x.
The derivative of 3cos(x) is -3sin(x). This can be found using the chain rule, which states that the derivative of a composition of functions is the derivative of the outer function evaluated at the inner function, multiplied by the derivative of the inner function. In this case, the derivative of cos(x) is -sin(x), and when multiplied by the constant 3, we get -3sin(x) as the derivative of 3cos(x).
Every fourth derivative, you get back to "sin x" - in other words, the 84th derivative of "sin x" is also "sin x". From there, you need to take the derivative 3 more times, getting:85th derivative: cos x86th derivative: -sin x87th derivative: -cos x
sin integral is -cos This is so because the derivative of cos x = -sin x
-cos(x)
The derivative of sin(x) is cos(x).