The derivative with respect to 'x' of sin(pi x) ispi cos(pi x)
D(y)= sin 2x
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
Following the correct order of operations: derivative of x^2 + 6/2 = derivative of x^2 +3, which equals 2x
To find the derivatve of the square root of cos x: Use the chain rule; this means multiply the inner derivative by the outer derivative. You can write the question f(x) = (cos x)1/2 This general break-down explains how to find d/dx f(x) note: d/dx basically symbolizes "the derivative of" In general terms: f(x) = x1/2 g(x) = cos x f(g(x)) = (cos x)1/2 outer derivative: d/dx f(z) = (1/2)*x-1/2 = 1/(4cos x)1/2 inner derivative: d/dx g(x) = -sin(x) final answer: d/dx f(g(x)) = -sin(x)/(4*cos x)1/2 note: d/dx means "the derivative of"; so d/dx x = 1 Further explained: Set up the equation to a more general form: (cos x)1/2 To make the inner derivative, look at cos(x) To make the outer derivative, look at x1/2 note: x ~ cos x; so we treat (cos x) simply as x, to create the outer derivative You probably know the necessary derivates: 1. derivative of cos x = -sin x 2. derivative of a1/2 = (1/2)*a-1/2 = 1/(4a)1/2 Multiplying the two we get the answer: -sin(x)/(4cos x)1/2
F(x) = 6 sin(x) + 2 cos(x)F'(x) = 6 cos(x) - 2 sin(x)
negative sin(x)
The derivative of cos x is -sin x, the derivative of square root of x is 1/(2 root(x)). Applying the chain rule, the derivative of cos root(x) is -sin x times 1/(2 root(x)), or - sin x / (2 root x).
(6 Cosx)2
The derivative of cos(x) is negative sin(x). Also, the derivative of sin(x) is cos(x).
y = x sin(x) + cos(x)Derivative of the first term = x cos(x) + sin(x)Derivative of the second term = -sin(x)y' = Sum of the derivatives = x cos(x) + sin(x) - sin(x)= [ x cos(x) ]
Every fourth derivative, you get back to "sin x" - in other words, the 84th derivative of "sin x" is also "sin x". From there, you need to take the derivative 3 more times, getting:85th derivative: cos x86th derivative: -sin x87th derivative: -cos x
The derivative with respect to 'x' of sin(pi x) ispi cos(pi x)
d/dx 2 cos x = -2 sin x
d/dx (sin x)^2=2sinxcosx
The derivative of sin (x) is cos (x). It does not work the other way around, though. The derivative of cos (x) is -sin (x).
The derivative of cos(x) equals -sin(x); therefore, the anti-derivative of -sin(x) equals cos(x).