I'm assuming you are talking about this equation:
x = [ -b +|- sqrt ( b2 - 4ac ) ] / ( 2a )
where, ax^2 + bx + c = 0
The formula is called the quadratic formula. It is used when either factoring is too difficult/tedious or for complex numbers.
Let's solve this equation together, friend. To isolate b, we can start by subtracting 2a from both sides of the equation. This will leave us with b equals P minus 2a. Remember, there are many ways to approach a problem, and it's all about finding the one that works best for you.
The question refers to the equation of a parabola, that is, a quadratic equation of the form y = ax2 + bx + c. Suppose x1 = -b/2a - z and x2 = -b/2a + z for some real number z. Then y1 = a*(-b/2a - z)2 + b*(-b/2a - z) + c = b2/4a + bz + az2 - b2/2a - bz + c = b2/4a + az2 - b2/2a + c and y2 = (-b/2a + z)2 + b*(-b/2a + z) + c = b2/4a - bz + az2 - b2/2a + bz + c = b2/4a + az2 - b2/2a + c So y1 = y2 thus, if x is the same distance (z) either side of -b/2a, then the corresponding y values are the same. And that, is what a line of symmetry means.
2a = b Is an example of an equation with linear dependence between the variable a and b (b is twice a)If you know any a you can find the bIf you graph this equation with a on one axis and b on the other (perpendicular) you will get a straight line
-b + or - the square root of b squared - 4ac over/divided by 2a
a-^2a-b^-a-b
The quadric equation is: negative b plus or minus the square root of b squared minus 4ac all over(divided by) 2a
x=-b/2a [negative B over 2A]
Let's solve this equation together, friend. To isolate b, we can start by subtracting 2a from both sides of the equation. This will leave us with b equals P minus 2a. Remember, there are many ways to approach a problem, and it's all about finding the one that works best for you.
For a quadratic equation in the form: ax² + bx + c = 0 The quadratic formula comes from completing the square of the quadratic equation that gives you a result of x=-b±√b²-4ac divided by 2a. Using a simple quadratic equation like x² + 2x + 1 = 0 a=1; b=2; c=1 x=-2±√2²-4(1)(1) divided by 2a x=-2±√4-4 divided by 2a (4 - 4 = 0 and the square root of 0 is 0) Therefore, x=-2
Since this is a linear equation with 2 variables, it is an unsolvable equation as a and b could be anything, to find an exact answer you need another equation that relates to the first one.
The question refers to the equation of a parabola, that is, a quadratic equation of the form y = ax2 + bx + c. Suppose x1 = -b/2a - z and x2 = -b/2a + z for some real number z. Then y1 = a*(-b/2a - z)2 + b*(-b/2a - z) + c = b2/4a + bz + az2 - b2/2a - bz + c = b2/4a + az2 - b2/2a + c and y2 = (-b/2a + z)2 + b*(-b/2a + z) + c = b2/4a - bz + az2 - b2/2a + bz + c = b2/4a + az2 - b2/2a + c So y1 = y2 thus, if x is the same distance (z) either side of -b/2a, then the corresponding y values are the same. And that, is what a line of symmetry means.
let, equation is ax2+bx+c=0 so, its solution will be x= (-b-sqrt(b*b-4ac))/2a x= (-b+sqrt(b*b-4ac))/2a it is generalized equation for finding roots of Quadratic eq.
X=-b/2a
2a = b Is an example of an equation with linear dependence between the variable a and b (b is twice a)If you know any a you can find the bIf you graph this equation with a on one axis and b on the other (perpendicular) you will get a straight line
The general quadratic equation is ax2 + bx + c = 0 The two solutions are: x = [ (negative b) plus or minus the square root of (b2 - 4ac) ] all divided by (2a).
-b/2a. i think.To show this, consider this equation:y = ax² + bx + cFactor out the a:y = a(x² + bx/a + c/a)Then, complete the squares to get:y = a(x² + bx/a + (b/(2a))² + c/a - (b/(2a))²)= a((x + (b/2a))² + c/a - (b/(2a))²)= a(x + (b/2a))² + c - b/(4a)By the vertex form:y = a(x - h)² + k where x = h is the axis of symmetry.So the general axis of symmetry for the quadratic equation is x = -b/(2a).
A quadratic equation is an equation where a quadratic polynomial is equal to zero. It can be written as ax^2+bx+c=0 where a,b,c are the coefficients and x is the variable. A quadratic equation has always two complex solutions for x given by the formula x=-b/2a+sqrt(b^2-4ac)/2a and x=-b/2a-sqrt(b^2-4ac)/2a. Examples of quadratic equations are x^2+x-2=0, 5x^2+6x=0, x^2+1=0 etc.