-8
arithmetic sequence
An arithmetic sequence.
6
14112027
The sum of the first 12 terms of an arithmetic sequence is: sum = (n/2)(2a + (n - 1)d) = (12/2)(2a + (12 - 1)d) = 6(2a + 11d) = 12a + 66d where a is the first term and d is the common difference.
The difference between succeeding terms in a sequence is called the common difference in an arithmetic sequence, and the common ratio in a geometric sequence.
arithmetic sequence
It is the "common difference".It is the "common difference".It is the "common difference".It is the "common difference".
An arithmetic sequence.
6
To find the first three terms of an arithmetic sequence with a common difference of -5, we first need the last term. If we denote the last term as ( L ), the terms can be expressed as ( L + 10 ), ( L + 5 ), and ( L ) for the first three terms, since each term is derived by adding the common difference (-5) to the previous term. Thus, the first three terms would be ( L + 10 ), ( L + 5 ), and ( L ).
29
14112027
An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. For example, the sequence 2, 5, 8, 11, 14 has a common difference of 3. Another example is 10, 7, 4, 1, which has a common difference of -3. In general, an arithmetic sequence can be expressed as (a_n = a_1 + (n-1)d), where (a_1) is the first term and (d) is the common difference.
The sum of the first 12 terms of an arithmetic sequence is: sum = (n/2)(2a + (n - 1)d) = (12/2)(2a + (12 - 1)d) = 6(2a + 11d) = 12a + 66d where a is the first term and d is the common difference.
If the terms get bigger as you go along, the common difference is positive. If they get smaller, the common difference is negative and if they stay the same then the common difference is 0.
To find the common difference in this arithmetic sequence, we need to identify the differences between consecutive terms. The terms given are 3x, 9y, 6x, 5y, 9x, y, 12x-3y, and 15x-7. Calculating the differences, we find that the common difference is not consistent across the terms, indicating that this sequence does not represent a proper arithmetic sequence. Therefore, there is no single common difference.