To find the nth term for this sequence, we first need to identify the pattern. The differences between consecutive terms are 1, 2, 3, and 4, indicating an increasing increment. This suggests the sequence is following a quadratic pattern. By examining the second differences, we see they are constant at 1. This indicates a quadratic sequence, and the nth term can be expressed as Tn = n^2 + 1.
12 - 5(n-1)
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
If 3 is the first term, then the nth term is [ 3 x 2(n-1) ] .
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
12 - 5(n-1)
The nth term is 5n-3 and so the next term will be 22
5
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
tn=5n-3
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
If 3 is the first term, then the nth term is [ 3 x 2(n-1) ] .
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
2n(n+1)
The Nth term in the series is [ 2N ] .
To find the nth term of a sequence, we first need to identify the pattern. In this case, the sequence appears to be increasing by consecutive odd numbers: 2, 4, 6, 8, and so on. This means the nth term can be represented by the formula n^2 + 2. So, the nth term for this sequence is n^2 + 2.
If 3 is the first term, then the nth term is [ 3 x 2(n-1) ] .