-6-4i.
When finding the conjugate of a binomial, you just reverse the sign. So the conjugate of 3+4i is 3-4i.
Add the real and the imaginary parts separately.
The product is(the product of the first term of each)plus(the product of the last term of each) plus(the product of the first term of the first and the last term of the second) plus(the product of the first term of the second and the last term of the first).
-4, +4, -4i and 4i
(2 + 4i) - (7 + 4i) = -5 2 + 4i - 7 + 4i = -5 + 8i
(9 + 4i)^2 = 9^2 + (2)(9)(4i) +i^2 substitute i^2 for -1; = 81 + 72i -1 = 80 + 72i
-6-4i.
The multiplicative inverse of a number a is a number b such that axb=1 If we look at (3-4i)/(5+2i), we see that we can multiply that by its reciprocal and the product is one. So (5+2i)/(3-4i) is the multiplicative inverse of (3-4i)/(5+2i)
the problem: what is 4 + 4i + 4 + 6i what you do is add the real and imaginary parts, thus: 4+4 and 4i+6i = 8+10i answer.
When finding the conjugate of a binomial, you just reverse the sign. So the conjugate of 3+4i is 3-4i.
(x - 4i)(x + 4i) where i is the square root of -1
4i(-2 -3i) = 4i×-2 - 4i×-3i = -8i -12i² = -8i + 12 = 12 -8i → the conjugate is 12 + 8i
To solve this type of problem, multiply both the numerator and denominator by the conjugate of the denominator. (2 - 4i) / (4 + 2i) = (2 - 4i)(4 - 2i) / (4 + 2i)(4 - 2i) then expand all the terms, and simplify. = (8 - 20i + 8i2) / (16 - 4i2) = (8 - 20i - 8) / (16 + 4) = -20i / 20 = -i Which in the required answer format becomes, 0 + i.
Add the real and the imaginary parts separately.
The four roots of 4√256 are {4, -4, 4i, and -4i}. Note that two of them are real numbers and the other two are pure imaginary, therefore 0 + 4i is the same as just 4i
3x2 + 51 = 6x Rewrite the equation so that it equates to zero 3x2 - 6x + 51 = 0 Simplify by dividing by 3 x2 - 2x + 17 = 0 Then use the quadratic formula x = {2 ± √[(-2)2 -(4x1x17)]} ÷ 2 = { 2 ± √-64} ÷ 2 = 1 ± 4i Then x = 1 + 4i and x = 1- 4i