Get a and b // where a and b are 2 numbers taken from the user Set Ma to a // Ma is the multiple of a Set Mb to b // Mb is the multiple of b While Ma<>Mb //(condition is that Ma not equal Mb) { if (Ma > Mb) then // finding which multiple is smaller Set Mb to Mb + b // we add to the smaller multiple the input value Else Set Ma to Ma + a End if } Print "the LCM of the numbers is" + Ma
Megabyte
Each megabyte (MB) is 1024 kilobytes (KB). Therefore, 42 KB is just under 4% of a MB.
240 MB = 0.24 GB
Since there are 1000 megabytes in a gigabyte, there would be 82,000 megabytes in 82 gigabytes. Nominally. There are actually 1024 bytes in a kilobyte, 1,024,000 in a megabyte and 1,024,000,000 in a gigabyte. The solution is left to the student.
It is mA + mB
ma + mb = m(a + b) this is an algebra formule, what cyfers, NUMBERS STAND A and M for I suspect that slashes representing fractions are missing: m/a + m/b = mb + ma/ab = m(b + a)/ab
Get a and b // where a and b are 2 numbers taken from the user Set Ma to a // Ma is the multiple of a Set Mb to b // Mb is the multiple of b While Ma<>Mb //(condition is that Ma not equal Mb) { if (Ma > Mb) then // finding which multiple is smaller Set Mb to Mb + b // we add to the smaller multiple the input value Else Set Ma to Ma + a End if } Print "the LCM of the numbers is" + Ma
The acceleration will be a sum of influences of Mb weight and weight of Ma opposing it. Pnet = Pb - Pa anet = (Mb*g-Ma*g)/Mb assuming g of 9.81 m/s2: anet = 8.30 m/s2.
Yes there is a MB warehouse in andover, ma
It is 1,875 miles according to Google Maps.
Any value you like.
30
times everything in the brackets by the stuff out of it
Monetary base- which is the sum of bank reserves and currency in circulation. The formulas of MB ismonetary base = reserves + currency (MB =R+C)
library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity mpadd isport ( a : in std_logic_vector(31 downto 0);b : in std_logic_vector(31 downto 0);y : out std_logic_vector(31 downto 0));end mpadd;architecture mpadd of mpadd isreturn std_logic_vector isFunction to_integer(x:in std_logic_vector(6 downto 0))return integer isvariable sum :integer:=0;variable Temp :Std_logic_vector(6 downto 0);begintemp:=x;xxx: for i in 0 to 6 loopif (temp(i)='1')thensum:=sum+2**i;elseSum:=Sum;end if;end loop;return sum;end function;variable MaIn : std_logic_vector(22 downto 0); -- Internal Registervariable MbIn : std_logic_vector(22 downto 0); -- Internal Registervariable Ea,Eb : std_logic_vector(7 downto 0); -- Two Exponents including Signvariable IR : std_logic_vector(22 downto 0); -- Resultant Mantissavariable IE : std_logic_vector(6 downto 0); -- Resultant Exponentvariable Ns : integer; -- Number Of Shiftsvariable Ma,Mb : std_logic_vector(22 downto 0); -- Mangitude Of Two mantissasvariable ES : std_logic; -- Sign Of Resulant Exponentvariable a,b : std_logic; -- Sign Of Two exponentsvariable s1,s2 : std_logic; -- Sign Of Two mantissasvariable Sign : std_logic; -- Sign Of Resultant Mantissavariable W,Z : std_logic_vector(1 downto 0);variable X : std_logic_vector(31 downto 0); -- Final ResultbeginMaIn:=AccOut(22 downto 0);MbIn:=Data(22 downto 0);Ea :=AccOut(30 downto 23);Eb :=Data(30 downto 23);a :=AccOut(30);b :=Data(30);Z :=(a&b);case Z iswhen "00" => Mb:=MbIn;Ma:=MaIn;if((Ea(6 downto 0)) Mb:=MbIn;Ma:=MaIn;NS:=to_integer(Eb(6 downto 0)+Ea(6 downto 0));for x in 1 to NS loopMa:=('0' & Ma(22 downto 1));end loop;IE:=Eb(6 downto 0);ES:=Eb(7);when "11" => Mb:=MbIn;Ma:=MaIn;if((Ea(6 downto 0)) sign:='0';when "11" => sign:='1';when "01" => if(Ea>Eb) thensign:='0';elsif(EaMb) thensign:='0';elsif(Ma if(Ea>Eb) thensign:='1';elsif(EaMb) thensign:='1';elsif(Ma null;end case;--***********Final Result After Addition***************************X:=(sign & ES & IE & IR(22 downto 0));return X;end function;beginprocess(a,b)beginy
100 degrees